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Web Appendix A: Model Details and Technical Specifications

In Table W1, we compare the proposed transformer-based methodology with existing

marketing models, such as HMM, Point-Process Models, and the previously best-performing

machine learning model – LSTM – across various dimensions for modeling the customer

journey. In this appendix we provide additional technical details on the proposed transformer

model and other benchmark models, as well as models we use for simulation exercise.

Other Components of Transformer

Residual connection, layer norm and feed-forward neural network. Following the multi-

head self-attention layer, the output of the attention layer is added to the original input

embedding in a step called the residual connection. The goal of the residual connection is to

give higher level layers direct access to information from lower layers. Next, the summed-up

vector is normalized, also known as the layer norm process. These two steps are performed

after each sub-layer, which can be jointly expressed as

z̃ = LayerNorm (z+ x̃) , (W1)

where x̃ is the input embedding of the self-attention layer, and z is the output of the self-

attention layer, and the layer norm is a function that normalizes each input embedding vector

and rescales it. For input embedding at each position i, that is, each row i of the matrix

z+ x̃, or zi + x̃i, the layer norm performs

LayerNorm(zi + x̃i) = γ
(zi + x̃i − µ)

σ
+ β. (W2)

The µ and σ are the mean and standard deviation of the elements of the vector zi+ x̃i. After

normalizing the vector, the layer norm rescales it to a suitable range, using two “learnable”

parameters γ and β. By scaling the embedding vectors to a suitable range, the layer norm
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Table W1: Model Comparisons

HMM Point-Process LSTM Transformers

Modeling Customer
Journey

Representing
touchpoint
sequences as
observable events
tied to hidden
states, capturing
underlying
dynamics.

Modeling
touchpoint
occurrences in
continuous time,
aiming to capture
event intensity
and timing based
on past outcomes
of touchpoints.

Learning data
patterns and
dependencies
using memory
cells, updated
sequentially by
gate functions to
incorporate new
touchpoint
information and
selectively forget
past states.

Leverages
self-attention
mechanisms to
assess the
significance of
different input
data segments,
enabling parallel
processing and
capturing
complex
dependencies
without relying
on sequential
processing.

Estimation Bayesian/MCMC
Methods.

MLE/Bayesian. Gradient
descent-based
optimization
methods.

Gradient
descent-based
methods.

Parallel Processing Word-by-word
Sequential
Processing,

Word-by-word
Sequential
Processing.

Word-by-word
Sequential
Processing.

Whole-sentence
parallel
processing.

Ability to Handle Large
Number of Unique
Touchpoints

Suited for
datasets with a
limited number of
touchpoints,
typically in single
digits.

Suitable for
datasets with a
small number of
touchpoints,
usually within
single digits.

Capable of
handling
extensive datasets
with thousands of
unique
touchpoints.

Equipped to
process large
datasets with
thousands of
unique
touchpoints
efficiently.

Modeling Touchpoint
Relationships

Parameterizing
state transition
and emission
probabilities to
indirectly model
touchpoint
relationships
through hidden
states.

The arrival rate
through a
touchpoint is a
function of
touchpoint fixed
effects and lag
effects of previous
touchpoints.

Indirectly
captures
touchpoint
relationships
through memory
cell states
updated via gate
functions.

Captures
touchpoint
relationships
through attention
weights across
multiple heads,
emphasizing the
connection
between each
touchpoint and
previous ones.

Model
Training/Estimation
Time

Several days Several days Several hours Several hours

Note: Estimation time is based on data used in the application section.
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process improves training performance in deep neural networks by facilitating the gradient

based training.

After the attention sub-layer and the layer norm operation in Equation W1, the output

embedding z̃ goes through a feed-forward neural network (FFNN) sub-layer.

y = FFNN(z̃) = W2max(0,W1z̃+ b1) + b2 (W3)

The FFNN has a sandwich structure. It consists of two affine transformations with a Rectified

Linear Unit (ReLU) activation function in between. The first affine transformation yields

(W1z̃+ b1), where W1 and b1 are the parameters. Next, it goes through the ReLU activation

function max(0, x). Finally, another affine transformation is performed with a different set

of parameters W2 and b2. Feed-forward neural networks with similar structures are widely

used in many neural network models, with small variations in between. These networks help

extract useful information for prediction from the input. The layer norm was performed

again after the FFNN sublayer, which outputs

ỹ = LayerNorm (y + z̃) . (W4)

Linear and sigmoid layer. The model uses embedding output from the encoder at position

t to predict the outcome of the next period at t + 1. A linear layer is used to project

embedding ỹi to single dimension and then followed by a sigmoid layer to calculate the

probability, denoted by pt+1 (See 4 in Figure 1 in the main text).

y∗t = WC ỹt,

pt+1 =
exp(y∗t )

1 + exp(y∗t )
.

(W5)

The same process is repeated for every interaction type s (we drop the s when describing

the processes in encoders).
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In the model training process, the outcome for each position is already known and the

model minimizes a loss function based on its guess and the true outcomes. We use cross

entropy for the loss function, which we describe in details in the following section.

Model Training Details for Transformer and LSTM

The transformer and LSTM models trained on the hospitality data require the most com-

putation resources. To implement the models, we mainly use the PyTorch library (version

1.12). We have attached the code for the main parts of the two models at the end of the

web appendix. The transformer and LSTM are trained on a Nvidia RTX A8000 GPU.

Hyperparameter searching. The transformer’s hyperparameters to be specified by the

researcher include number of heads, number of encoder layers, dimensionality of the input

embedding vectors and number of nodes in the feed-forward neural network. The LSTM’s

hyperparameters include number of recurrent layers, dimensionality of the embedding vectors

and number of features in the hidden states. Because of the large amount of parameters to be

determined, it would be inefficient to do a grid search that trains a model on all combinations

of parameters. We use the Ray Tune software (Liaw et al. 2018) to tune all hyperparameters

in transformer and LSTM. The Ray Tune will randomly sample from the parameter search

space and train the model. It also has a scheduler that stops the training early for bad

parameter specifications. Based on the loss function, the best parameter combinations are

returned. We list all hyperparameters for transformer tuning below. We run 300 trials with

the HyperOpt search algorithm and early-stopping scheduler ASHA.

• Embedding size {50, 100, 200};

• Number of features in the hidden states of FFNN {100, 200};

• Number of layers {3, 4, 5};

• Number of heads {2, 3, 4};
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• Learning rate of SGD: Uniform(0, 1);

• Learning rate of Adam: Log-Uniform(10−6, 10−4).

After conducting the trials, we selected an embedding size of 100, with 100 features in the

hidden states, 4 layers, and 4 attention heads for the transformer. We found that the learning

rate is the most critical hyperparameter during training. For SGD, we used a learning rate

of 0.2, while for Adam, the learning rate was set to 1× 10−5.

Loss function and loss weighting. Customer journey data, when organized as time series,

is often very sparse, with most time intervals showing no recorded activity for an individual

customer. We found that while the imbalanced data is not a problem for transformer, it

greatly impacts LSTM’s performance. The challenge of class imbalance on the performance

of machine learning models is well documented in literature (Kubat and Matwin 1997; Kaur,

Pannu, and Malhi 2020; Johnson and Khoshgoftaar 2019). To address this issue, following the

common practice in literature (Fernando and Tsokos 2022), we apply weights to the positive

class in the loss function in the training sample. Because our dependent variables are all

binary, we use the binary cross-entropy (BCE) loss function. Let Npos and Nneg represent the

number of positive and negative samples in dependent variable to be predicted, respectively.

To balance the loss contribution of each class, we calculate weights for the positive class as

weightpos =
Nneg

Npos
. The weighted BCE loss becomes

Weighted BCE Loss = −
(
weightpos · y · log(p) + (1− y) · log(1− p)

)
,

where y denotes the actual outcome (0 or 1), and p is the predicted probability for y = 1.

After weighting the positive class, the loss function will act as if the dataset contains equal

amount of positive samples and negative samples. In frameworks like PyTorch, these weights

can be passed directly as a tensor in the BCEWithLogitsLoss function, allowing the model

to focus more on the minority class during training. We calculate the average weighted BCE

loss across all samples in the training or validating set to get the training loss and validation
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loss respectively.

Probability calibration. Applying class weights adjusts the loss function to prioritize

the minority class (positive class in our case), helping the model learn to correctly classify

both classes. However, these weights distort the raw prediction probabilities, making them

less representative of the actual likelihood of each class. This can lead to biased probabil-

ities, often overestimating the likelihood of the minority class, especially if the weighting

is substantial. Imagine if the weightpos is sufficiently high, the model will overestimate p

to minimize the loss, because the cost to do so, i.e., the decrease of (1 − y) log(1 − p) for

the negative class, is sufficiently low. To correct this bias brought by class weighting, we

calibrate the output probability according to methods proposed in the literature (Chen et al.

2018; Tian et al. 2020; Caplin, Martin, and Marx 2022), which uses Bayes theorem to cal-

culate the calibrated posterior probability. For each target variable (purchase, channel visit,

etc.), suppose P0 is the variable prevalence (true positive rate) in the real data, for each

observation i, ORi = pi/(1− pi) is the odds ratio of the output probability pi, the calibrated

probability is given by

P (Di = 1|y) = P0 ·ORi

P0 ·ORi + (1− P0)
.

Parameter optimization. We train the transformer using mini-batch gradient descent,

which is commonly used in parameter optimization (Khirirat, Feyzmahdavian, and Johans-

son 2017; Li et al. 2014). The mini-batch gradient descent updates parameters after pro-

cessing a batch of data. We found that during the model training on the hospitality data,

increasing the batch size (i.e., number of samples in the batch) reduces the training time

without hurting the training performance, as long as the loss function converges. Therefore,

we choose a batch size of 200, which is the largest batch size possible for the computational

environment. For transformer training, we use the SGD class embedded in the PyTorch

library with the specified batch size to train most of the parameters. After testing different

optimizers, we found that SGD with mini-batches produces the most stable training process,
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but is not efficient in optimizing the mixture head weights for each data point in the training

sample. On the other hand, the Adam optimizer adjusts the mixture head weights more

effectively but tends to overfit the data, leading to a large discrepancy between the training

and validating performance. Therefore, we use a mixed-optimizer strategy. We divide the

model parameters into two groups: the mixture head weights and other parameters. The

head weights are optimized by the Adam, and the rest of model parameters are optimized

by the SGD. All parameters are updated at the same time when processing each batch of

samples. The learning rates of the two optimizers are tuned together with other hyperpa-

rameters. On top of the optimizer, we make the learning rate of the SGD decay with the

increase of epochs (multiplied by 0.9 every 5 epochs). This helps the model settle into a good

minimum by taking smaller, more stable steps, and reduces oscillations around the optimum

and helps the model converge more reliably.

Figure W1 shows the training and validation loss over the number of epochs during

the transformer model’s training process. Our model is different from the majority of the

machine learning models in the way that the mixture head weights are individually optimized

for each customer in the training sample. For validating sample, we use the average weights

across all customers to make predictions and calculate loss function. As one might expect,

beyond a certain point, further optimizing the individual’s weights in the training sample

will hurt the out-of-sample validating performance. But choosing the model with the best

out-of-sample performance will not adequately account for the customer heterogeneity in

the distribution of heads. Therefore, we use the mean of training and validating loss (the

green line in Figure W1) as the stopping criterion. The mean of training and validating loss

converges after around 250 epochs. We stop the model training after 300 epochs. Training

300 epochs takes about 18 hours in total.

The LSTM model is trained only with the Adam optimizer. We found that the validation

loss of the Adam optimizer shows more stable decline than that of the SGD. We also apply the

learning rate decay over the Adam optimizer. Figure W2 shows the training and validation
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Figure W1: Transformer’s Training and Validation Loss over Number of Epochs

loss over the number of epochs for LSTM. We run 300 epochs and choose the model with

the lowest validation loss during the training process.

Figure W2: LSTM’s Training and Validation Loss over Number of Epochs
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Estimation of the HMM and Point Process

The HMM and Point Process models are estimated with the Hamiltonian Monte Carlo

(HMC) algorithm, which is implemented in the Stan software. The Stan code for the two

models are also attached at the end of the appendix. we use the CmdStanPy library in

Python as the interface. The program is run on a AWS (Amazon Web Services) machine

with a 4-core Intel(R) Xeon(R) Platinum 8259CL CPU (2.50GHz) and a 128 GiB memory.

Training and hold-out samples. The sampling time of both Bayesian models depend on

the sample size. To control the training time, We randomly sample 2,000 users from the

population as the training sample, and another 2,000 users as the hold-out sample.

Model prior. The parameters in the HMM model include the initial state probability

ρ0s for each channel s, the channel specific state transition matrix ρcss′ for channel c and

between state s, s′; the purchase coefficients αs under state s, and channel visit coefficients

λcs for each channel c at state s. The priors for above parameters are

ρ0s, ρcss′ ∼ Dirichlet (1) ,

αs, λcs ∼ Normal (0, 1) .

(W6)

The Poisson point process model has two parts – an arrival rate model for channel visit

(Equation 6 in the main text), and a logistic model for purchase decision (Equation 7 in the

main text). For the channel visit arrival rate, Equation 6 has baseline parameter µ0, the

attractiveness of last visited channel αc′ and current channel βc, the inertia parameter θ,

and the impact of the cumulative inventory of visits ρc for each channel c. For the logistic

purchase model, parameters include a intercept ϕ0 and a coefficient ϕc for the inventory of

visits of each channel. The priors for these parameters are

µ0 ∼ Gamma (1, 0.5) ,

αc′ , βc, θ, ρc, ϕ0, ϕc ∼ Normal (0, 1) .

(W7)
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Model training and diagnostics. For both of the models, we run 4 chains, each having

500 iterations, with the first 250 warming-up iterations discarded. We use the Stan default

values for all other hyperparameters of the HMC algorithm. We found that the HMM has

multimodality problem in the posterior distribution, meaning that the HMC is trapped at

local optimum, and it cannot be addressed through tuning the hyperparameters. Therefore,

we run the HMM model multiple times from different initiations, and choose the initiation

values that generate the highest log likelihood. We check the model diagnostics and ensure

that all parameters have converged with a R-hat less than 1.05, indicating good chain mixing

(Vehtari et al. 2021). The trace plots for some parameters are shown below in Figure W3

and Figure W4. Different chains are marked by different line styles in the trace plots. For a

complete table of all parameter estimates, credible intervals and diagnostic statistics, please

refer to Table W2-W7.
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Figure W3: Trace Plots of HMM Model
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Figure W4: Trace Plots of Point Process Model
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Table W2: HMM Parameter Estimates, Part 1

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

Purchase Estimates: αsαsαs

State 1 -2.248 0.229 -2.687 -1.850 282 349 1.02

State 2 -1.456 0.103 -1.674 -1.270 805 653 1.00

State 3 -0.483 0.083 -0.640 -0.330 793 587 1.00

Channel Visit Estimates: λcsλcsλcs

AFFILIATE, state1 -4.926 0.127 -5.183 -4.693 1056 674 1.00

AFFILIATE, state2 -6.571 0.268 -7.051 -6.033 1137 660 1.01

AFFILIATE, state3 -9.311 0.235 -9.790 -8.905 1056 779 1.00

B2B, state1 -7.176 0.356 -7.797 -6.422 1585 551 1.00

B2B, state2 -7.502 0.342 -8.173 -6.848 1448 564 1.00

B2B, state3 -9.984 0.304 -10.617 -9.463 1404 639 1.01

DIRECT, state1 -5.205 0.286 -5.819 -4.707 750 597 1.00

DIRECT, state2 -1.061 0.037 -1.130 -0.990 1307 828 1.00

DIRECT, state3 -5.945 0.086 -6.100 -5.770 736 684 1.00

DISPLAY, state1 -5.162 0.144 -5.461 -4.903 1118 672 1.00

DISPLAY, state2 -6.396 0.248 -6.918 -5.933 1584 664 1.01

DISPLAY, state3 -8.755 0.179 -9.083 -8.381 1926 778 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state1 -3.635 0.079 -3.792 -3.487 618 666 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state2 -5.358 0.156 -5.672 -5.062 1429 866 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state3 -8.320 0.194 -8.676 -7.922 1231 686 1.00

EMAIL, state 1 -3.680 0.078 -3.827 -3.523 651 646 1.00

EMAIL, state 2 -5.418 0.162 -5.738 -5.098 1246 761 1.00

EMAIL, state 3 -7.829 0.137 -8.079 -7.544 1499 731 1.00

EMERGING TECHNOLOGIES, state1 -6.948 0.316 -7.596 -6.350 1122 722 1.00

EMERGING TECHNOLOGIES, state2 -6.860 0.262 -7.379 -6.359 1753 753 1.00

EMERGING TECHNOLOGIES, state3 -10.115 0.332 -10.806 -9.518 1803 652 1.00

NATURAL SEARCH, state1 -1.918 0.049 -2.014 -1.824 305 678 1.01

NATURAL SEARCH, state2 -4.706 0.124 -4.957 -4.478 1296 840 1.00

NATURAL SEARCH, state3 -6.338 0.080 -6.508 -6.194 1250 665 1.00

PAID SEARCH, state1 -3.316 0.072 -3.455 -3.178 615 508 1.00

PAID SEARCH, state2 -5.823 0.194 -6.201 -5.450 1114 674 1.00

PAID SEARCH, state3 -7.486 0.119 -7.707 -7.259 1192 712 1.00

REFERRAL ENGINE, state1 -5.497 0.170 -5.842 -5.187 1332 608 1.00

REFERRAL ENGINE, state2 -6.895 0.279 -7.444 -6.373 1344 729 1.00

REFERRAL ENGINE, state3 -9.455 0.261 -9.922 -8.933 1133 718 1.01

RESLINK, state1 -6.028 0.211 -6.414 -5.649 949 786 1.00

RESLINK, state2 -7.247 0.356 -7.906 -6.545 995 432 1.00

RESLINK, state3 -8.636 0.172 -8.975 -8.291 1875 708 1.01

SOCIAL MEDIA, state1 -6.577 0.297 -7.184 -6.055 1177 695 1.00

SOCIAL MEDIA, state2 -7.110 0.349 -7.823 -6.507 1116 670 1.01

SOCIAL MEDIA, state3 -9.936 0.293 -10.480 -9.356 1114 616 1.01

UNPAID REFERRER, state1 -2.110 0.054 -2.215 -2.005 338 550 1.01

UNPAID REFERRER, state2 -4.596 0.100 -4.802 -4.414 1296 490 1.01

UNPAID REFERRER, state3 -8.256 0.193 -8.645 -7.918 979 712 1.00

Initial Probability: ρ0sρ0sρ0s
State 1 0.095 0.007 0.080 0.108 527 716 1.01

State 2 0.146 0.008 0.132 0.162 1374 622 1.01

State 3 0.760 0.009 0.740 0.776 702 711 1.00
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Table W3: HMM Parameter Estimates, Part 2

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

Transition Probability: ρcss′ρcss′ρcss′

AFFILIATE, state 1 to state 1 0.795 0.091 0.611 0.962 788 627 1.01

AFFILIATE, state 1 to state 2 0.033 0.033 0.000 0.097 1029 652 1.00

AFFILIATE, state 1 to state 3 0.172 0.089 0.000 0.322 740 746 1.01

AFFILIATE, state 2 to state 1 0.502 0.212 0.100 0.897 1588 689 1.00

AFFILIATE, state 2 to state 2 0.140 0.126 0.000 0.390 1579 548 1.00

AFFILIATE, state 2 to state 3 0.359 0.210 0.000 0.716 1156 734 1.00

AFFILIATE, state 3 to state 1 0.284 0.195 0.003 0.673 1076 440 1.01

AFFILIATE, state 3 to state 2 0.089 0.082 0.000 0.247 799 444 1.00

AFFILIATE, state 3 to state 3 0.627 0.203 0.239 0.976 1243 697 1.01

B2B, state 1 to state 1 0.254 0.191 0.001 0.638 1399 605 1.00

B2B, state 1 to state 2 0.324 0.221 0.001 0.735 1475 755 1.00

B2B, state 1 to state 3 0.422 0.233 0.005 0.816 1054 625 1.01

B2B, state 2 to state 1 0.282 0.226 0.000 0.727 2595 404 1.01

B2B, state 2 to state 2 0.338 0.246 0.000 0.789 1275 754 1.01

B2B, state 2 to state 3 0.380 0.242 0.001 0.813 1389 789 1.01

B2B, state 3 to state 1 0.251 0.209 0.000 0.670 1399 495 1.00

B2B, state 3 to state 2 0.346 0.228 0.005 0.775 1385 698 1.00

B2B, state 3 to state 3 0.403 0.241 0.002 0.823 1385 513 1.00

DIRECT, state 1 to state 1 0.105 0.085 0.000 0.284 956 461 1.00

DIRECT, state 1 to state 2 0.699 0.168 0.380 0.979 1138 882 1.00

DIRECT, state 1 to state 3 0.196 0.151 0.000 0.497 938 489 1.00

DIRECT, state 2 to state 1 0.001 0.001 0.000 0.003 1192 569 1.00

DIRECT, state 2 to state 2 0.774 0.018 0.737 0.811 840 476 1.00

DIRECT, state 2 to state 3 0.225 0.018 0.189 0.262 842 500 1.01

DIRECT, state 3 to state 1 0.012 0.009 0.000 0.028 981 550 1.00

DIRECT, state 3 to state 2 0.038 0.034 0.000 0.105 614 594 1.00

DIRECT, state 3 to state 3 0.951 0.035 0.882 0.998 695 739 1.00

DISPLAY, state 1 to state 1 0.634 0.117 0.426 0.871 1228 716 1.00

DISPLAY, state 1 to state 2 0.128 0.097 0.000 0.308 546 191 1.01

DISPLAY, state 1 to state 3 0.238 0.117 0.011 0.444 933 534 1.00

DISPLAY, state 2 to state 1 0.463 0.231 0.007 0.853 950 560 1.00

DISPLAY, state 2 to state 2 0.155 0.151 0.000 0.477 1349 613 1.00

DISPLAY, state 2 to state 3 0.382 0.212 0.023 0.768 902 716 1.00

DISPLAY, state 3 to state 1 0.126 0.090 0.000 0.296 743 342 1.00

DISPLAY, state 3 to state 2 0.045 0.043 0.000 0.137 1118 429 1.00

DISPLAY, state 3 to state 3 0.829 0.096 0.647 0.989 867 726 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 1 to state 1 0.595 0.058 0.488 0.712 598 603 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 1 to state 2 0.059 0.028 0.010 0.116 1033 349 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state 1 to state 3 0.347 0.057 0.233 0.456 512 624 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state 2 to state 1 0.536 0.140 0.278 0.815 928 585 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 2 to state 2 0.074 0.061 0.000 0.200 1271 546 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 2 to state 3 0.389 0.139 0.112 0.652 886 875 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 3 to state 1 0.177 0.118 0.001 0.405 869 507 1.00

ECONFO AND PRE-ARRIVAL EMAIL, state 3 to state 2 0.057 0.051 0.000 0.157 805 501 1.01

ECONFO AND PRE-ARRIVAL EMAIL, state 3 to state 3 0.766 0.124 0.528 0.970 1088 675 1.00
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Table W4: HMM Parameter Estimates, Part 3

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

Transition Probability: ρcss′ρcss′ρcss′

EMERGING TECHNOLOGIES, state 1 to state 1 0.274 0.211 0.001 0.693 1456 741 1.00

EMERGING TECHNOLOGIES, state 1 to state 2 0.245 0.203 0.000 0.655 1739 654 1.00

EMERGING TECHNOLOGIES, state 1 to state 3 0.481 0.248 0.019 0.888 1422 695 1.00

EMERGING TECHNOLOGIES, state 2 to state 1 0.201 0.162 0.000 0.532 1604 617 1.00

EMERGING TECHNOLOGIES, state 2 to state 2 0.147 0.133 0.000 0.421 1226 398 1.01

EMERGING TECHNOLOGIES, state 2 to state 3 0.652 0.191 0.293 0.980 1390 667 1.00

EMERGING TECHNOLOGIES, state 3 to state 1 0.254 0.206 0.000 0.674 1167 566 1.00

EMERGING TECHNOLOGIES, state 3 to state 2 0.226 0.199 0.000 0.654 1602 667 1.00

EMERGING TECHNOLOGIES, state 3 to state 3 0.520 0.251 0.062 0.940 1187 650 1.00

NATURAL SEARCH, state 1 to state 1 0.731 0.041 0.657 0.817 285 597 1.02

NATURAL SEARCH, state 1 to state 2 0.005 0.004 0.000 0.014 640 483 1.00

NATURAL SEARCH, state 1 to state 3 0.264 0.041 0.178 0.338 283 612 1.02

NATURAL SEARCH, state 2 to state 1 0.710 0.105 0.487 0.898 760 508 1.00

NATURAL SEARCH, state 2 to state 2 0.016 0.016 0.000 0.049 1448 615 1.00

NATURAL SEARCH, state 2 to state 3 0.274 0.105 0.060 0.467 792 598 1.00

NATURAL SEARCH, state 3 to state 1 0.131 0.049 0.037 0.228 1119 427 1.01

NATURAL SEARCH, state 3 to state 2 0.005 0.005 0.000 0.014 827 405 1.00

NATURAL SEARCH, state 3 to state 3 0.864 0.049 0.769 0.959 1117 420 1.01

PAID SEARCH, state 1 to state 1 0.586 0.058 0.477 0.705 646 592 1.01

PAID SEARCH, state 1 to state 2 0.009 0.007 0.000 0.024 897 462 1.01

PAID SEARCH, state 1 to state 3 0.405 0.058 0.279 0.507 624 616 1.01

PAID SEARCH, state 2 to state 1 0.516 0.181 0.150 0.849 1533 793 1.00

PAID SEARCH, state 2 to state 2 0.060 0.059 0.000 0.174 1679 709 1.00

PAID SEARCH, state 2 to state 3 0.424 0.182 0.046 0.744 1351 818 1.01

PAID SEARCH, state 3 to state 1 0.327 0.079 0.180 0.486 1138 644 1.00

PAID SEARCH, state 3 to state 2 0.012 0.012 0.000 0.037 1207 502 1.01

PAID SEARCH, state 3 to state 3 0.660 0.078 0.504 0.805 1145 685 1.00

REFERRAL ENGINE, state 1 to state 1 0.531 0.138 0.265 0.790 895 552 1.00

REFERRAL ENGINE, state 1 to state 2 0.053 0.054 0.000 0.155 1325 556 1.00

REFERRAL ENGINE, state 1 to state 3 0.415 0.134 0.181 0.700 928 797 1.00

REFERRAL ENGINE, state 2 to state 1 0.617 0.204 0.235 0.976 1974 564 1.01

REFERRAL ENGINE, state 2 to state 2 0.146 0.132 0.000 0.411 1474 528 1.01

REFERRAL ENGINE, state 2 to state 3 0.237 0.180 0.001 0.591 1250 728 1.00

REFERRAL ENGINE, state 3 to state 1 0.376 0.191 0.056 0.761 1262 695 1.00

REFERRAL ENGINE, state 3 to state 2 0.079 0.076 0.000 0.233 1046 606 1.00

REFERRAL ENGINE, state 3 to state 3 0.545 0.198 0.150 0.882 1192 664 1.00

RESLINK, state 1 to state 1 0.696 0.151 0.409 0.970 1003 608 1.01

RESLINK, state 1 to state 2 0.115 0.106 0.000 0.330 1102 693 1.00

RESLINK, state 1 to state 3 0.190 0.131 0.001 0.428 991 544 1.00

RESLINK, state 2 to state 1 0.262 0.208 0.000 0.662 1298 828 1.00

RESLINK, state 2 to state 2 0.289 0.217 0.001 0.715 1672 729 1.00

RESLINK, state 2 to state 3 0.449 0.246 0.038 0.884 1428 895 1.01

RESLINK, state 3 to state 1 0.040 0.039 0.000 0.116 638 242 1.01

RESLINK, state 3 to state 2 0.052 0.048 0.000 0.149 861 404 1.00

RESLINK, state 3 to state 3 0.908 0.060 0.790 0.994 680 402 1.01
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Table W5: HMM Parameter Estimates, Part 4

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

Transition Probability: ρcss′ρcss′ρcss′

SOCIAL MEDIA, state 1 to state 1 0.352 0.199 0.001 0.699 799 689 1.01

SOCIAL MEDIA, state 1 to state 2 0.180 0.176 0.000 0.565 882 577 1.01

SOCIAL MEDIA, state 1 to state 3 0.468 0.195 0.118 0.876 1392 858 1.00

SOCIAL MEDIA, state 2 to state 1 0.486 0.241 0.041 0.888 862 561 1.00

SOCIAL MEDIA, state 2 to state 2 0.213 0.162 0.002 0.522 1280 646 1.00

SOCIAL MEDIA, state 2 to state 3 0.301 0.196 0.000 0.650 1246 712 1.00

SOCIAL MEDIA, state 3 to state 1 0.496 0.242 0.056 0.919 1282 590 1.00

SOCIAL MEDIA, state 3 to state 2 0.257 0.205 0.000 0.652 907 555 1.00

SOCIAL MEDIA, state 3 to state 3 0.247 0.200 0.000 0.636 837 412 1.00

UNPAID REFERRER, state 1 to state 1 0.864 0.043 0.785 0.944 210 453 1.02

UNPAID REFERRER, state 1 to state 2 0.020 0.008 0.003 0.036 879 589 1.00

UNPAID REFERRER, state 1 to state 3 0.116 0.043 0.035 0.198 199 394 1.03

UNPAID REFERRER, state 2 to state 1 0.858 0.074 0.727 0.994 538 743 1.01

UNPAID REFERRER, state 2 to state 2 0.016 0.016 0.000 0.049 1193 712 1.01

UNPAID REFERRER, state 2 to state 3 0.126 0.074 0.001 0.258 564 790 1.00

UNPAID REFERRER, state 3 to state 1 0.126 0.086 0.000 0.286 568 363 1.00

UNPAID REFERRER, state 3 to state 2 0.016 0.016 0.000 0.047 663 324 1.00

UNPAID REFERRER, state 3 to state 3 0.858 0.087 0.699 0.996 657 466 1.00

OUTSIDE CHANNEL, state 1 to state 1 0.963 0.014 0.938 0.992 205 384 1.02

OUTSIDE CHANNEL, state 1 to state 2 0.002 0.002 0.000 0.005 1102 770 1.01

OUTSIDE CHANNEL, state 1 to state 3 0.034 0.014 0.006 0.061 204 305 1.02

OUTSIDE CHANNEL, state 2 to state 1 0.000 0.000 0.000 0.001 951 511 1.00

OUTSIDE CHANNEL, state 2 to state 2 0.997 0.003 0.992 1.000 989 657 1.00

OUTSIDE CHANNEL, state 2 to state 3 0.003 0.003 0.000 0.008 952 639 1.00

OUTSIDE CHANNEL, state 3 to state 1 0.003 0.000 0.002 0.003 499 822 1.01

OUTSIDE CHANNEL, state 3 to state 2 0.005 0.000 0.004 0.005 926 793 1.00

OUTSIDE CHANNEL, state 3 to state 3 0.993 0.000 0.992 0.993 638 899 1.00
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Table W6: Poisson Point Process Parameter Estimates, Part 1

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

θ 2.814 0.031 2.758 2.876 1886 781 1.00

µ0 0.002 0.000 0.002 0.003 628 783 1.00

αc′αc′αc′

AFFILIATE -1.919 0.105 -2.120 -1.712 1916 951 1.02

B2B -4.177 0.322 -4.794 -3.524 2073 726 1.00

DIRECT 0.850 0.041 0.765 0.925 624 912 1.00

DISPLAY -1.821 0.100 -2.017 -1.632 1497 851 1.00

ECONFO AND PRE-ARRIVAL EMAIL -0.737 0.064 -0.857 -0.613 1085 807 1.00

EMAIL -0.762 0.062 -0.887 -0.649 921 777 1.00

EMERGING TECHNOLOGIES -3.526 0.250 -4.020 -3.084 2309 649 1.00

NATURAL SEARCH 0.342 0.045 0.252 0.425 781 906 1.00

PAID SEARCH -0.500 0.056 -0.615 -0.396 821 882 1.00

REFERRAL ENGINE -2.338 0.133 -2.603 -2.087 1743 606 1.00

RESLINK -2.294 0.122 -2.514 -2.047 1531 787 1.00

SOCIAL MEDIA -3.329 0.207 -3.721 -2.893 2505 706 1.01

βcβcβc

AFFILIATE 1.095 0.139 0.846 1.361 1104 478 1.01

B2B 0.189 0.569 -0.929 1.263 1159 716 1.00

DIRECT -0.958 0.043 -1.034 -0.865 1620 815 1.00

DISPLAY 0.235 0.134 -0.040 0.472 1795 809 1.01

ECONFO AND PRE-ARRIVAL EMAIL -0.094 0.078 -0.253 0.059 1633 732 1.00

EMAIL -0.233 0.073 -0.364 -0.082 1338 964 1.00

EMERGING TECHNOLOGIES -0.047 0.305 -0.700 0.520 1616 733 1.01

NATURAL SEARCH -0.769 0.048 -0.863 -0.679 1506 840 1.00

PAID SEARCH -0.072 0.065 -0.195 0.058 1450 781 1.00

REFERRAL ENGINE 0.018 0.185 -0.311 0.387 1647 758 1.01

RESLINK -0.492 0.161 -0.805 -0.175 1689 877 1.00

SOCIAL MEDIA 1.896 0.680 0.631 3.258 1498 654 1.00

UNPAID REFERRER -0.131 0.046 -0.218 -0.033 1270 952 1.00

ρρρ

AFFILIATE 0.021 0.087 -0.135 0.199 1049 775 1.01

B2B 0.162 0.438 -0.716 0.954 1228 637 1.00

DIRECT 0.190 0.018 0.156 0.227 1957 904 1.00

DISPLAY -0.182 0.091 -0.349 -0.001 1589 721 1.01

ECONFO AND PRE-ARRIVAL EMAIL -0.046 0.045 -0.141 0.040 1620 808 1.00

EMAIL 0.123 0.040 0.046 0.199 1395 808 1.00

EMERGING TECHNOLOGIES -0.171 0.205 -0.554 0.246 1788 839 1.01

NATURAL SEARCH 0.159 0.024 0.110 0.203 1616 711 1.00

PAID SEARCH -0.202 0.044 -0.289 -0.117 1714 994 1.00

REFERRAL ENGINE 0.250 0.125 -0.004 0.477 1354 913 1.00

RESLINK 0.520 0.062 0.394 0.636 1588 984 1.00

SOCIAL MEDIA -1.633 0.604 -2.873 -0.546 1389 784 1.01

UNPAID REFERRER 0.248 0.022 0.207 0.292 1703 742 1.01
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Table W7: Poisson Point Process Parameter Estimates, Part 2

Variables Mean SD HDI 2.5% HDI 97.5% ess bulk ess tail R hat

ϕ0 -1.346 0.040 -1.427 -1.270 1681 834 1.01

ϕcϕcϕc

AFFILIATE 0.131 0.144 -0.151 0.398 1917 638 1.01

B2B -0.791 0.797 -2.381 0.647 2373 665 1.00

DIRECT 0.179 0.029 0.120 0.234 1733 730 1.00

DISPLAY 0.068 0.181 -0.262 0.432 2862 521 1.01

ECONFO AND PRE-ARRIVAL EMAIL 0.204 0.088 0.035 0.377 2035 609 1.01

EMAIL 0.036 0.077 -0.106 0.182 2360 732 1.01

EMERGING TECHNOLOGIES -0.134 0.434 -0.936 0.668 2162 626 1.01

NATURAL SEARCH 0.055 0.042 -0.026 0.137 1785 725 1.00

PAID SEARCH 0.212 0.080 0.066 0.367 1633 751 1.00

REFERRAL ENGINE 0.324 0.226 -0.116 0.741 3000 910 1.00

RESLINK -0.083 0.139 -0.375 0.170 2157 718 1.00

SOCIAL MEDIA -0.724 0.667 -2.027 0.598 2941 723 1.00

UNPAID REFERRER -0.323 0.044 -0.407 -0.236 2293 861 1.01
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Web Appendix B: Additional Results on Customer Journey Prediction

Model-Free Evidence

Figure W5 shows the number of transactions over time in the data. The firm’s website

experiences four peaks of booking, with the first three occurring between mid-October to

early November, and the final peak in December. Because the first three peaks fall within

the calibration period, they are reflected in the booking probability prediction as external

shocks in Figure 4(a) and 4(b), while the last peak that happens in the hold-out period are

not captured.

Figure W5: Number of Transactions over Time

Previous research on Customer Lifetime Value (CLV) has highlighted the prevalence of

“clumpiness” in customer visit patterns. Following the approach of Zhang, Bradlow, and

Small (2015), we measure the clumpiness of visits using the hotel dataset in our application

section. Given that a substantial portion of the dataset comprises single-visit customers,

we separately assess clumpiness for single-visit and multiple-visit customers. As shown in

Table W8, 28% of all customers exhibit statistically significant clumpiness in their visits.

Among multiple-visit customers, this proportion increases notably: 49% are identified as

having clumpy visit patterns.
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Table W8: Visit Clumpiness

N Nonclumpy (%) Clumpy (%)

All Customers 92,575 72 28

Multiple-visit Customers 51,035 51 49

Single-visit Customers 41,540 98 2

In the dataset we simulate using the mixture DGP, all customers have multiple visits,

and 5% are classified as visit-clumpy. While this proportion is lower than that observed in

the hotel data application, we demonstrate in Web Appendix D – using a public dataset –

that the degree of clumpiness can vary across different digital marketing contexts.

Balanced Accuracy, F1-Score and Precision-Recall Curve

We present the balanced accuracy of the proposed transformer model and benchmark

models in Table W9 and W10. Because the dataset is very sparse, for binary classification

tasks, the probability output for the positive class is very low, thus the 0.5 threshold is

suboptimal (Wei and Dunbrack 2013; Buda, Maki, and Mazurowski 2018). We calculate

the balanced accuracy for a wide range of different thresholds (Grandini, Bagli, and Visani

2020; Brodersen et al. 2010) and report the highest balanced accuracy across all thresholds,

following the approach of Kim, Lee, and Jeon (2020) and Johnson and Khoshgoftaar (2019).

To evaluate the precision-recall tradeoff, we also plot the Precision-Recall Curve (Figure

W6) for model comparison during the calibration period and report both the Area Under

the Curve (PR-AUC) (Table W13, W14) and the best F1-score (Table W11, W12). Due to

the class imbalance in the data, with a substantially larger negative class, both the F1-scores

and PR-AUC values are relatively low, which is consistently reflected across all models. This

is expected, as Precision-recall curve, and thus the Fβ score, explicitly depends on the ratio

of positive to negative test cases (Brabec et al. 2020). It is shown that class imbalance

can significantly suppress both PR-AUC and F1-score values even when classifiers are well-

calibrated (Jeni, Cohn, and De La Torre 2013; Davis and Goadrich 2006).
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Table W9: Balanced Accuracy Comparison in the Calibration Period

Dependent Variable In-Sample Balanced Accuracy Out-of-Sample Balanced Accuracy

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.8729 0.7770 0.7050 0.6451 0.8610 0.7755 0.693 0.6481

Channel Visit

AFFILIATE 0.9737 0.8208 0.7694 0.8232 0.8509 0.7910 0.7342 0.7543

B2B 0.9951 0.7329 0.7049 0.7998 0.8937 0.7497 0.733 0.8497

DIRECT 0.8517 0.7660 0.7372 0.7377 0.8231 0.7611 0.7262 0.7345

DISPLAY 0.9361 0.7631 0.6953 0.6733 0.8339 0.7295 0.7244 0.6878

ECONFO AND PRE-ARRIVAL EMAIL 0.9188 0.8021 0.7643 0.7336 0.8403 0.8026 0.7508 0.7116

EMAIL 0.9273 0.7613 0.7230 0.7148 0.8345 0.7602 0.6969 0.7131

EMERGING TECHNOLOGIES 0.9753 0.7503 0.7338 0.6070 0.8304 0.7357 0.7822 0.7271

NATURAL SEARCH 0.8748 0.7572 0.7266 0.7201 0.8277 0.7254 0.6974 0.6827

PAID SEARCH 0.9034 0.7313 0.6757 0.6764 0.8149 0.7079 0.6469 0.6509

REFERRAL ENGINE 0.9502 0.7359 0.7384 0.6926 0.8507 0.7303 0.7157 0.7072

RESLINK 0.9483 0.7792 0.6007 0.7225 0.8520 0.7339 0.6148 0.6684

SOCIAL MEDIA 0.9815 0.8622 0.8077 0.8050 0.8580 0.8322 0.8091 0.6427

UNPAID REFERRER 0.9116 0.8321 0.8235 0.8085 0.8433 0.8226 0.7973 0.7705

Table W10: Balanced Accuracy Comparison in the Hold-out Period (t ≥ 140)

Dependent Variable In-Sample Balanced Accuracy Out-of-Sample Balanced Accuracy

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.8681 0.6274 0.5007 0.5105 0.8358 0.5993 0.5012 0.5163

Channel Visit

AFFILIATE 0.7626 0.5762 0.7707 0.8975 0.7146 0.5709 0.5861 0.6875

B2B 0.6920 0.5127 0.5000 0.5000 0.6560 0.5155 - -

DIRECT 0.8513 0.5827 0.5643 0.5713 0.7285 0.5764 0.5828 0.5576

DISPLAY 0.5631 0.5754 0.5416 0.5609 0.5394 0.5504 0.5812 0.5717

ECONFO AND PRE-ARRIVAL EMAIL 0.6800 0.5700 0.5213 0.6014 0.6857 0.5476 0.6067 0.5813

EMAIL 0.6211 0.5709 0.5999 0.5357 0.5924 0.5577 0.5714 0.5765

EMERGING TECHNOLOGIES 0.5062 0.6124 0.5000 0.5000 0.5111 0.5836 0.5 0.5

NATURAL SEARCH 0.8275 0.6273 0.5749 0.5543 0.7511 0.5787 0.5763 0.5633

PAID SEARCH 0.7872 0.6162 0.6174 0.6565 0.7768 0.5703 0.6275 0.6781

REFERRAL ENGINE 0.6091 0.6206 0.6213 0.5000 0.5674 0.5298 0.5717 0.6505

RESLINK 0.6363 0.5852 0.5691 0.5659 0.5441 0.5410 0.5 0.6661

SOCIAL MEDIA 0.5364 0.5743 0.5000 0.5000 0.5626 0.6743 0.5 0.5

UNPAID REFERRER 0.7500 0.6244 0.5873 0.6481 0.6803 0.6003 0.5954 0.6318
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(a) In-Sample (b) Out-of-Sample

Figure W6: Precision-Recall curve of proposed model versus three benchmark models on
the first 140 time periods.

Probability of Channel Visit over Time

In the Model Training and Customer Journey Prediction section in the main text, we

showed how the predicted booking probability evolves over time using two user examples

(Figure 4a, 4b). Likewise, the probability of channel visits over time can be visualized in a

similar manner. Figure W7a and Figure W7b shows the evolvement of user A and user B’s

probability of visit through Direct and Natural Search channels in each period. User A uses

both Direct and Natural Search channels while user B only uses Direct channel. Overall user

A has a much lower probability of making direct visit to the website than that of user B, but

a higher probability of visit through Natural Search than user B. This is inferred from the

different visiting patterns of the two users. User A’s probability of direct visit drops after

she finished a booking at Day 23.5, and rises again after a visit was made through natural

search at Day 32.5. User B has a higher probability of direct visit due to having a higher

direct visit frequency than user A. Since user B never visits through Natural Search, the

probability of visit through Natural Search is close to the baseline, which is lower than 0.01.
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(a) User A - Direct and Natural Search Visit Probability

(b) User B - Direct and Natural Search Visit Probability

Figure W7: Predicted Direct and Natural Search Visit Probability of the Subsequent
Period
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Table W11: F1-Score Comparison in the Calibration Period (0 ≤ t < 140)

Dependent Variable In-Sample F1-Score Out-of-Sample F1-Score

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.2293 0.0881 0.0666 0.0378 0.1705 0.0806 0.0591 0.0304

Channel Visit

AFFILIATE 0.1770 0.1861 0.0111 0.1126 0.1819 0.1750 0.0235 0.1097

B2B 0.1624 0.0002 0.0003 0.1364 0.1488 0.0002 0.0011 0.119

DIRECT 0.2651 0.2576 0.2366 0.1007 0.2460 0.2453 0.2386 0.1065

DISPLAY 0.1498 0.1374 0.0064 0.0484 0.1234 0.1166 0.0131 0.0784

ECONFO AND PRE-ARRIVAL EMAIL 0.1877 0.1812 0.0257 0.0876 0.1702 0.1667 0.0169 0.0793

EMAIL 0.1747 0.1608 0.0343 0.0566 0.1612 0.1632 0.0234 0.0428

EMERGING TECHNOLOGIES 0.1388 0.0004 0.0006 0.1053 0.1027 0.0003 0.001 0.4286

NATURAL SEARCH 0.2144 0.2021 0.1216 0.0837 0.1898 0.1768 0.1075 0.061

PAID SEARCH 0.1418 0.1251 0.0294 0.0646 0.1183 0.1108 0.0231 0.0565

REFERRAL ENGINE 0.1130 0.0586 0.0056 0.0549 0.0867 0.0570 0.0044 0.12

RESLINK 0.1953 0.1638 0.0056 0.1169 0.1657 0.1415 0.0024 0.0315

SOCIAL MEDIA 0.2097 0.1770 0.0030 0.1600 0.1676 0.1626 0.0027 0.1239

UNPAID REFERRER 0.3074 0.3134 0.3314 0.1530 0.2849 0.2936 0.2643 0.1073

Time-Varying Importance of Touchpoints

Recently, a number of attribution methods were proposed to increase the interpretabil-

ity of deep learning models (Lundberg and Lee 2017; Shrikumar, Greenside, and Kundaje

2017; Sundararajan, Taly, and Yan 2017). In this research, we use the Integrated Gradients

(IG) method proposed by Sundararajan, Taly, and Yan (2017) to calculate the time-varying

importance score for each customer interaction event in the journey. It has been used in a

wide range of disciplines beyond computer science (Senior et al. 2020; Davies et al. 2021;

Novakovsky et al. 2022). Nevertheless, we have reviewed related papers to better understand

how IG compares to Shapley in contexts similar to ours (e.g., Sundararajan and Najmi 2020;

Feng et al. 2022). While Sundararajan and Najmi (2020) note that Shapley values encom-

pass several methods, including Integrated Gradients, Feng et al. (2022) compare Baseline

Shapley (BShap) values to Integrated Gradients using simulations. They examined common

model classes where BShap and IG produce identical explanations and where they differ.

Their simulations show that the differences are not significantly large unless tree-based al-

gorithms (which are not differentiable) are involved. Consequently, the authors conclude
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Table W12: F1-Score Comparison in the Hold-out Period (t ≥ 140)

Dependent Variable In-Sample F1-Score Out-of-Sample F1-Score

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.0731 0.0253 0.0116 0.0334 0.0631 0.019 0.0117 0.0193

Channel Visit

AFFILIATE 0.1546 0.1071 0.2667 0.1538 0.0958 0.1042 0.0057 0.0158

B2B 0.0251 0.0001 0.0002 0.0448 0.0381 0.0001 - -

DIRECT 0.1445 0.0522 0.0732 0.0331 0.1368 0.0438 0.0783 0.0393

DISPLAY 0.0467 0.0050 0.0006 0.0190 0.0370 0.0046 0.053 0.0476

ECONFO AND PRE-ARRIVAL EMAIL 0.0446 0.0799 0.0036 0.0214 0.0339 0.0573 0.0174 0.0259

EMAIL 0.0539 0.0621 0.0316 0.0588 0.0486 0.0533 0.0232 0.0136

EMERGING TECHNOLOGIES 0.0035 0.0153 0.0121 0.0001 0.0004 0.0041 0.0121 0.0002

NATURAL SEARCH 0.1207 0.0528 0.0275 0.0213 0.0722 0.0402 0.0209 0.0252

PAID SEARCH 0.0925 0.0622 0.0523 0.0112 0.0524 0.0372 0.0574 0.0226

REFERRAL ENGINE 0.0647 0.0008 0.0007 0.0005 0.0275 0.0034 0.0087 0.07

RESLINK 0.0682 0.0076 0.0135 0.0077 0.0108 0.0034 0.0046 0.0111

SOCIAL MEDIA 0.0960 0.0008 0.0001 0.0001 0.0311 0.0041 0.0046 0.0002

UNPAID REFERRER 0.1508 0.0609 0.0962 0.0317 0.1333 0.0579 0.125 0.1023

that the choice between the two methods is largely based on convenience and task suitabil-

ity. Since we do not use tree-based algorithms, we believe our results are not significantly

impacted by this choice.

Here we briefly describe the algorithm. To begin with, a baseline is defined to compare

the importance of each input variable to the baseline. In our application the baseline defined

as a period with no activity where the input is Xs = 0 for all channel s. Denote the baseline

embedding by X0. Let F denote the neural network that takes input Xt for each t and

output a probability in [0, 1]. Consider the straightline between the baseline X0 and the

input Xt, the integrated gradients are calculated by cumulating the gradients at all points

along the path. According to Sundararajan, Taly, and Yan (2017), the integrated gradient

along the sth dimension for the input Xt and baseline X0 is defined as the path integral

IntegratedGradss(Xt) ::= (Xst −X0
s )×

∫ 1

α=0

∂F (X0
s + α× (Xst −X0

s )

∂Xst

dα (W8)

To get the overall importance of Xt, one can sum up IntegratedGradss(Xt) across all di-

mension s. The Sundararajan, Taly, and Yan (2017) paper gives the result that the overall
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Table W13: Precision-Recall AUC Comparison in the Calibration Period
(0 ≤ t < 140)

Dependent Variable In-Sample PR AUC Out-of-Sample PR AUC

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.1401 0.0402 0.027 0.0153 0.0948 0.0334 0.019 0.0108

Channel Visit

AFFILIATE 0.0916 0.0849 0.0029 0.0444 0.0771 0.0826 0.0036 0.0193

B2B 0.0775 0.0001 0.0001 0.0322 0.0533 0.0001 0.0002 0.0358

DIRECT 0.1824 0.1581 0.1277 0.0477 0.1534 0.1411 0.1302 0.0435

DISPLAY 0.0680 0.0520 0.0014 0.0095 0.0396 0.0376 0.0027 0.0162

ECONFO AND PRE-ARRIVAL EMAIL 0.0974 0.0855 0.0073 0.0272 0.0733 0.0736 0.0041 0.0199

EMAIL 0.0933 0.0729 0.0082 0.0138 0.0704 0.0715 0.005 0.0113

EMERGING TECHNOLOGIES 0.0578 0.0001 0.0002 0.0110 0.0262 0.0001 0.0002 0.3732

NATURAL SEARCH 0.1345 0.1085 0.0415 0.0365 0.1016 0.0835 0.0297 0.0175

PAID SEARCH 0.0709 0.0500 0.0071 0.0325 0.0456 0.0386 0.0041 0.0100

REFERRAL ENGINE 0.0456 0.0096 0.0011 0.0090 0.0229 0.0086 0.0007 0.0138

RESLINK 0.1006 0.0694 0.0006 0.0199 0.0617 0.0501 0.0006 0.0057

SOCIAL MEDIA 0.0977 0.0569 0.0007 0.1221 0.0618 0.0432 0.0006 0.0645

UNPAID REFERRER 0.2088 0.2012 0.2020 0.0649 0.1747 0.1749 0.1256 0.0368

importance of Xt is F (Xt) − F (X0) under the condition that F is differentiable almost

everywhere.

Following Equation W8, IntegratedGradss(Xt) provides the importance score for each

channel s on conversion prediction of the targeting time period. Let anτst denote the im-

portance score of touchpoint s that happens at period t for the prediction of customer n’s

conversion probability at period τ . A greater positive importance score anτst indicates inter-

acting with the touchpoint s is associated with higher probability of conversion for n at time

τ . A negative importance score indicates s is associated with lower probability of conversion.

The aggregate importance score is calculated as As =
∑

n,τ,t anτst.

For the time-varying effect of a touchpoint, let δ = t − τ denote the time difference

between the interaction with the touchpoint and the purchase. The mean importance for a

touchpoint s at δ period of time before purchase is µc(δ) =
∑

n,t,τ=t−δ anτst/
∑

n,τ=t−δ 1nτs

(
∑

n,τ=t−δ 1nτs > 0), where 1nτs = {0, 1} is the indicator of whether customer n visits

through s at time τ . µs(δ) denotes the average impact of a visit through touchpoint c on the

future conversion probability after a period of time δ. In the case when
∑

n,τ=t−δ 1nτs = 0,
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Table W14: Precision-Recall AUC Comparison in the Calibration Period
(t ≥ 140)

Dependent Variable In-Sample PR AUC Out-of-Sample PR AUC

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.0347 0.0104 0.0044 0.0067 0.0278 0.0082 0.0043 0.0085

Channel Visit

AFFILIATE 0.0698 0.0373 0.0721 0.0404 0.0294 0.0368 0.0005 0.0024

B2B 0.0037 0.0000 0.0000 0.0088 0.0046 0.0000 - -

DIRECT 0.0898 0.0247 0.0283 0.0196 0.0683 0.0196 0.0275 0.0147

DISPLAY 0.0042 0.0005 0.0002 0.0008 0.0027 0.0005 0.0035 0.0161

ECONFO AND PRE-ARRIVAL EMAIL 0.0128 0.0161 0.0010 0.0031 0.0108 0.0110 0.0019 0.0028

EMAIL 0.0146 0.0111 0.0025 0.0074 0.0098 0.0079 0.0023 0.0024

EMERGING TECHNOLOGIES 0.0001 0.0004 0.0016 0.0000 0.0001 0.0002 0.0024 0.000

NATURAL SEARCH 0.0549 0.0190 0.0085 0.0072 0.0315 0.0147 0.0082 0.0073

PAID SEARCH 0.0213 0.0103 0.0042 0.0024 0.0100 0.0081 0.0063 0.0218

REFERRAL ENGINE 0.0153 0.0002 0.0002 0.0002 0.0033 0.0003 0.0008 0.0085

RESLINK 0.0131 0.0006 0.0007 0.0007 0.0010 0.0005 0.0007 0.0015

SOCIAL MEDIA 0.0295 0.0001 0.0000 0.0000 0.0020 0.0004 0.0014 0.0000

UNPAID REFERRER 0.0709 0.0207 0.0215 0.0087 0.0492 0.0209 0.0433 0.0370

µs(δ) = 0.

Figure W8 compares the aggregate importance of each channel or variable. The aggre-

gate importance score is the total increases in conversion when the channel visits or variable

indicator equals one as compared to the counterfactual baseline where the channel or variable

indicator equals zero. Direct visits to the website and previous bookings have the most pos-

itive impact on conversion prediction, both signaling a strong likelihood of purchase. This is

not surprising given that the sample consists of loyalty-program members who diretcy visit

the website to make their bookings. The results also show that the conversion probability

would be lower if the previous booking was a weekend stay, as such bookings may indi-

cate leisure travel and thus a lowering effect. Customer-initiated channels such as natural

search and unpaid referrer have higher impact on conversion than firm-initiated channels

such as paid search and email. Among firm-initiated channels, paid search has the highest

importance, followed by email and affiliate.

In Figures 7 and 8 of the paper (main text), we present the time-varying impact of direct

and email visits. Here, we extend the analysis to showcase the impact of other channels.
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Figure W8: Aggregate importance of input variables on booking conversion

Figures W10 through W12 display mean importance score for three channels and previous

purchase. Notably, natural search has a more significant effect on conversion probability

compared to paid search, suggesting higher purchase intent among natural search users.

Remarkably, most touchpoints exhibit positive impact on conversion prediction up to a

certain time threshold, typically around 30 days before purchase. Visits occurring earlier

than this threshold tend to have slightly negative impact, indicating lower purchase likelihood

on the website.

Figure W9: Attribution of Affiliate channel

Figure W20 illustrates the impact of prior booking history on predicted purchase prob-

ability. Notably, the impact of previous bookings on conversion differs significantly from
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Figure W10: Attribution of Unpaid Referrer channel

Figure W11: Attribution of Natural Search channel

Figure W12: Attribution of Paid Search channel
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Figure W13: Attribution of Display channel

Figure W14: Attribution of Pre-Arrival Email channel

Figure W15: Attribution of Emerging Tech channel
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Figure W16: Attribution of Referral Engine channel

Figure W17: Attribution of Social Media channel

Figure W18: Attribution of Reservation Link channel
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Figure W19: Attribution of B2B channel

other touchpoints. Generally, having a booking history with the firm boosts a customer’s

purchase likelihood, particularly within approximately 35 days, except when a booking oc-

curs within 12 hours, leading to a sharp decline in predicted booking probability. This

finding underscores the likelihood of historical purchases enhancing customer loyalty, given

their membership in a loyalty program, but also indicates that consecutive purchases within

a short timeframe are unlikely. Compared to other touchpoints, the influence of booking his-

tory exhibits a slower decay within the 30-day window, suggesting a more sustained loyalty

effect.

Figure W20: Attribution of previous booking
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Web Appendix C: Advertising Targeting

In this Appendix, we examine how our transformer model can identify marketing actions

to improve return-on-investment. A formal optimal determination would require detailed

data on marketing actions, allowing joint modeling of both supply-side and demand-side

effects (e.g., Manchanda, Rossi, and Chintagunta, 2004) or their integration through the

NEIO modeling framework. Since such data is unavailable, we conduct analyses based on

conservative assumptions of marketing effectiveness. These analyses illustrate the potential

utility of our model, provided suitable data become available.

Our dataset reveals substantial variation in firm-initiated touchpoints compared to customer-

initiated touchpoints. Specifically, demand for room nights is derived primarily from cus-

tomer decisions, such as vacation planning or attending conferences and events, indicating

most interactions are customer-driven. Firm-initiated actions primarily serve to guide cus-

tomers toward the firm’s website following initial customer engagement. Analysis shows

that firm-initiated touchpoints occur rather randomly relative to customer-driven activities.

Given this variability, our model is particularly relevant for typical operational scenarios

(”business as usual”). If standard firm-initiated marketing efforts continue, our model can

effectively suggest beneficial actions and accurately estimate their impact on customer con-

version rates. Additionally, the email campaigns analyzed were general (with conservative

assumptions of marketing effectiveness) and aggregate-focused rather than personalized or

retargeted, meaning emails reached customers at varied stages within their customer journey.

Email targeting counterfactual.

Among the thirteen available channels, firm-initiated channels include Paid Search, Email,

Pre-arrival Email, Affiliate, Display, and Social Media. These channels are designed to target

customers and influence their journey. Our model estimates the impact of a firm’s advertising

efforts on user visitation and purchasing behavior. Using Email advertising as an example,
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we demonstrate the effectiveness of ad retargeting across different strategies as predicted by

the transformer approach.

We simulate an Email advertising retargeting campaign that would begin after the end

of the calibration period (t = 139) retaining all regular campaigns that already exist in the

data. Then we predict user visit and purchase probabilities for the following 15 days or 30

12-hour periods (Figure W21) and compare these predicted outcomes against the baseline

probability with no interventions. Using the hold-out sample of 9,258 users, we explore the

predictions of different targeting strategies: (a) indiscriminate targeting across all 9,258 users

in the sample; (b) targeting users who are estimated to have the highest baseline purchase

probability at t = 139; (c) behavioral targeting using a simple heuristic, such as total visits

in the last 10 days of the calibration period, selecting users with the most visits, similar to

the common practice in behavioral targeting based on user clicks and browsing history and

(d) targeting users with the highest potential increase in purchase probability in the next 30

periods.

For selective targeting b), c) and d), suppose the firm selects 2,000 users from the hold-

out sample. To measure the effectiveness of the advertising campaign, we use the average

conversion increase per targeted individual in the observation period. Let pnt denote the

purchase probability of customer n at period t with the campaign and p0nt denote the purchase

probability of customer n at period t without the campaign, the average conversion increase

is given by 1
N

∑N
n=1

∑169
t=140(pnt − p0nt). A higher average conversion increase per targeted

customer, under a fixed marginal cost of targeting an individual, indicates a more effective

ad campaign.

Figure W21: Illustration of Firm Advertising Targeting
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We apply a 5% click-through rate to all targeted users, based on industry benchmarks

(CampaignMonitor 2022). Table W15 compares the outcomes of various targeting strategies.

(Note that this is a conservative assumption - those users in the predicted groups are likely

to have a higher click-through rate). Indiscriminate targeting is the least effective, yielding

an average conversion increase of just 0.0011 per targeted user, or 1.1 conversions per 1,000

targeted users. Behavioral targeting, based on visit history, performs slightly better, with

1.2 conversions per thousand users. In contrast, the two model-based strategies deliver

significantly higher results. Targeting users with the highest baseline purchase probability

leads to 2.1 conversions per thousand targeted users. The most effective approach, however,

is targeting users with the highest potential increase in purchase probability, resulting in

a striking 4.5 conversions per thousand targeted users. For example, targeting the 2,000

users with the highest predicted purchase probability increase achieves nearly the same total

conversion gain (9 conversions) as indiscriminate targeting of all 9,258 users (10 conversions).

This smaller scale delivers five times the ROI, showcasing the precision and efficiency of

our model. However, this strategy requires simulating outcomes for each user, making it

computationally intensive. Despite this trade-off, it is highly effective for driving high-value

conversions.

Table W15: Email Advertising Targeting

Targeted Population Size Avg. Conversion Increase Total Conversion Gain

Per Targeted User Per Click-Through

Everyone 9,258 0.0011 0.0216 10.0

Users with most visits in the past 10 days 2,000 0.0012 0.0237 2.4

Users with highest baseline purchase probability 2,000 0.0021 0.0429 4.3

Users with highest increase in purchase probability 2,000 0.0045 0.0900 9.0

* Under 5% uniform click-through rate.
** Results based on the predictions of the subsequent 15 days.

If we do not know the ground truth in real-world data, as in the above case, what can

we do? To address this potential limitation, we further investigate these findings using a

simulation exercise. We consider three channels A, B, and Email and use AR3 as the data

generating process (DGP) to simulate the visit and purchase data for 20 periods for 2,000
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customers with an overall average conversion rate of 18%. An e-mail targeting campaign

is undertaken at Period 80 and the conversion lift is determined as the difference between

the purchase probabilities with and without the e-mail targeting in the next 20 periods.

Table W16 provides the total conversion lift (and average conversion lift per targeted user)

achieved under each of the competing models compared against the same metrics for the

DGP prediction (calculated using he same DGP model that generates the data) for different

four scenarios: targeting (a) all the 2000 users, (b) top 10% customers with highest baseline

purchase probability, (c) the top 10% customers with most visits in the past 20 periods,

and (d) top 10% customers with highest increase in conversion probabilities. Table W16

shows that the Transformer model is closest among all the competing models to the DGP

prediction in all the four cases, with LSTM coming second, and HMM and Point Process

models a distant third and fourth. This simulation illustrates that the transformer model

performs the best among all competing models at identifying the best intervention policy.

Targeting timing.

A user’s customer journey consists of both customer-initiated and firm-initiated touch-

points. This raises a critical question: when is the optimal time for a firm to target a

customer based on an observed customer-initiated touchpoint that might signal a potential

sale? Targeting too early, before the customer is ready, or too late, after the purchase decision

has already been made, can lead to ineffective ad targeting. The optimal timing of target-

ing has not been extensively explored in the existing literature, partly due to the sparsity

of customer visit or transaction data over time. However, with the proposed transformer

model, we can now dynamically tailor targeting strategies for each individual, leveraging

their observed history of visits and purchases to optimize touchpoint timing and maximize

overall impact.

We conduct an individual-level analysis of email targeting following a direct visit by a

customer, focusing on the customer journeys of two users: User A and User B. Specifically,
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Table W16: Results Summary of Simulated Targeting

Targeted Population Selected by Each Model Size Model Estimate DGP Prediction

Total

Conversion

Lift†

Avg.

Conversion Lift

Per Targeted

Total

Conversion

Lift

Avg.

Conversion Lift

Per Targeted

Everyone

Transformer 2,000 5.1871 0.0026 6.7405 0.0034

HMM 2,000 -3.2195 -0.0016 6.7405 0.0034

Poisson Point Process 2,000 0.4896 0.0002 6.7405 0.0034

LSTM 2,000 4.3937 0.0022 6.7405 0.0034

Top 10% customers with highest

baseline purchase probability

Transformer 200 0.0477 0.0002 0.6766 0.0034

HMM 200 -0.1946 -0.0010 0.3605 0.0018

Poisson Point Process 200 -0.0490 -0.0002 0.0952 0.0005

LSTM 200 0.0532 0.0003 0.6949 0.0035

Top 10% customers with most visits

in past 20 periods

Transformer 200 0.3885 0.0019 0.4034 0.0020

HMM 200 -0.3277 -0.0016 0.4034 0.0020

Poisson Point Process 200 0.0207 0.0001 0.4034 0.0020

LSTM 200 0.3205 0.0016 0.4034 0.0020

Top 10% customers with highest increase

in conversion probability

Transformer 200 1.4358 0.0072 1.5733 0.0079

HMM 200 0.1395 0.0007 0.9041 0.0045

Poisson Point Process 200 0.2557 0.0013 1.1777 0.0059

LSTM 200 1.1735 0.0059 1.3093 0.0065

Note. a) We use AR3 as the DGP to simulate the visit and purchase data. A targeting campaign is simulated at
period 80 using the Email Channel. b) Results are based on targeting the top 10% individuals with the highest
predicted conversion lift in the next 20 periods after targeting. Conversion lift is given by the difference between the
purchase probability with and without the targeting, under the assumption of 5% click-through rate. c) The table
shows the total conversion lift from the top 10% individuals and the average conversion lift per individual. Model
estimate is the predicted conversion lift given by the models in the left column. DGP prediction is the predicted
conversion lift calculated using the same DGP model that generates the data.

† Note that the negative lifts means that the values for these cases are below the baseline values and could be
attributed to the fact that we use AR3 which typically favor Transformers and LSTM, but our simulation studies
show that, in general, HMM and Point Process models underperform in most cases.
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we examine how email targeting 12 hours after a direct visit compares to targeting 5 days

after the visit in influencing conversion outcomes. For both users, we compare the baseline

probability of conversion without email targeting (represented by the blue line in Figures

X and Y) to the probabilities of conversion with email targeting at two different times:

(a) within 12 hours of the direct visit (orange dotted line) and (b) within 5 days of the

direct visit (green dotted line). These conversion lifts are accumulated over 15-day period

following the email targeting. To ensure robust estimates, we calculate average conversion

probabilities using 150 iterations of the transformer-based prediction algorithm. For each

period, we test whether the conversion probabilities with and without email targeting are

significantly different, retaining only the significant incremental lifts for further analysis.

For User A (Figure W22), who has had only one direct visit in their history on Day

21.5, email targeting within the next 12 hours of the direct visit results in a next-period

instantaneous conversion lift of 0.011 and a 15-day total conversion lift of 0.135. In contrast,

if the email targeting occurs 5 days after the direct visit, the next-period instantaneous

conversion lift is 0.013, but the 15-day total conversion lift decreases to 0.110. Thus, for

User A, targeting within 12 hours of the direct visit is clearly the superior strategy.

Figure W22: Email Targeting of User A

For User B (Figure W23), who has had five direct visits in their history, targeting within

the next 12 hours after the most recent direct visit on Day 59.5 results in a next-period in-
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stantaneous conversion lift of 0.006 but a 15-day total conversion lift of -0.011. This suggests

that while the email initially increases the conversion probability, it lowers conversion prob-

abilities below the baseline in subsequent periods. (This effect is similar to retail promotions

causing forward buying at the expense of future sales, which is more prominent for User B

who is at a later stage close to conversion.) In contrast, targeting 5 days after the direct visit

produces a next-period instantaneous conversion lift of 0.019 and a 15-day total conversion

lift of 0.019, as the incremental lifts for subsequent periods are statistically insignificant.

Therefore, for User B, it is clearly more effective to target 5 days after the direct visit rather

than immediately after.

Figure W23: Email Targeting of User B

This example highlights the value of personalized targeting enabled by our model. While

implementing such individualized strategies involves intensive computation, the process can

be significantly simplified by conducting the analysis at the cohort level, allowing for easier

execution without sacrificing effectiveness, as the next example reveals.

Cohort-level targeting timing.

The time-varying impact estimates for direct visits, as shown in Figure 7, reveal an

intriguing pattern. The impacts tend to decay quickly moving backward from Day 0 (the

day of conversion), reaching a low around Day -7, then increasing until Day -9, before
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declining again near Day -15 and peaking at Day -17, with similar oscillations observed over

time. This pattern provides valuable insights into the timing of targeting campaigns for

cohorts making direct visits on specific days. For instance, the impact of a direct visit on

a potential conversion seven days later is likely to be lower compared to its impact on a

potential conversion nine days later. If the objective of an email targeting campaign is to

enhance this impact, it is more effective to “strike when the iron is hot.” Targeting with an

email campaign nine days after the direct visit would result in higher incremental conversions

than targeting seven days after the visit.

To test these targeting policies, we selected a cohort of users (numbering 489) who visited

the hotel website on a specific day (Day 25) and simulated their purchase conversions and

lifts compared to the baseline under two scenarios: targeting them seven days after the direct

visit versus nine days after the direct visit. Based on 50 prediction simulations, targeting the

cohort seven days after the visit resulted in 97.58 incremental conversions over the subsequent

15-day period, whereas targeting them nine days later yielded 104.08 incremental conversions

during the same time frame. These results validate the insights derived from the time-varying

impact estimates and demonstrate how our model can be leveraged to pinpoint the optimal

timing for targeting, thereby achieving higher returns.
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Web Appendix D: Application to a Public Dataset

We apply the proposed transformer to a public dataset on Kaggle1. The dataset is also

in the digital marketing context and has the similar structure as the application data. It

includes 586,737 visit sessions from 240,108 unique cookie IDs. Each visit session is from

one of the five marketing channels – Facebook, Instagram, Online Display, Online Video and

Paid Search. Some sessions are associated with a conversion and the transaction value is

available. Table W17 shows the summary statistics for the marketing channels. Table W18

shows the clumpiness of the visits in the dataset (Zhang, Bradlow, and Small 2015).

Table W17: Channel Summary Statistics

Channel N Conversion Conversion Rate

Facebook 175,741 5,301 3.02%

Paid Search 151,440 4,547 3.00%

Online Video 113,302 3,408 3.01%

Instagram 75,201 2,244 2.98%

Online Display 71,053 2,139 3.01%

Total 586,737 17,639 3.01%

Table W18: Visit Clumpiness of the Public Dataset

N Nonclumpy (%) Clumpy (%)

All Customers 240,108 94 6

Multiple-visit Customers 87,445 90 10

Single-visit Customers 152,663 97 3

We apply the same processing steps as in the application section to prepare the data.

We treat each unique cookie ID as an individual customer and organize the dataset into

a panel data structure. Each period represents a 12-hour window of activity. 50% of the

customers in the dataset are held out and the remaining data is divided into five folds for

training and validation. Then we train the proposed transformer model, as well as the LSTM

1The webpage link for the dataset is https://www.kaggle.com/code/hughhuyton/multitouch-attribution-

modelling/notebook
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model described in the Model Comparison section on the dataset. We include six variables –

five channel visit indicators and a conversion indicator. In- and out-of-sample performance

comparison is shown in Table W19.

Table W19: Performance Comparison on the Public Dataset

Dependent Variable In-Sample AUC Out-of-Sample AUC

Proposed Transformer LSTM Proposed Transformer LSTM

Conversion 0.6949 0.5554 0.6904 0.5536

Channel Visit

Facebook 0.7453 0.6782 0.7445 0.6784

Instagram 0.7515 0.6919 0.7508 0.6914

Online Display 0.7826 0.6895 0.7814 0.6900

Online Video 0.8311 0.8096 0.8316 0.8103

Paid Search 0.6985 0.6592 0.6974 0.6572

Although the performance differs from the results presented in the application due to

different and sparser data pattern, the model comparison still demonstrates the superior

performance of the proposed transformer model over LSTM.

42



Web Appendix E: Ablation Experiments

To identify the key components driving the transformer’s superior performance, we fo-

cus on two critical features: positional encoding and multi-head self-attention, which set

it apart from earlier deep learning models. These components enable the transformer to

flexibly model time effects and event dependencies. Positional encoding represents time as

vectors, while self-attention captures inter-temporal dependencies through attention weights.

Multiple heads further enhance this by capturing diverse aspects of these dependencies, com-

plementing each other. The detailed mechanisms are discussed in the Model section.

We run an ablation study on the transformer model using simulated datasets generated by

autoregressive models (AR1, AR3, AR5, with varying degree of calendar effects, as described

in Web Appendix F). We compare three ablation models – transformer without positional

encoder, transformer with attention mask that restricts attention solely on the immediate

preceding period, and transformer with single head. Table W20 shows the results of the

ablation experiment, comparing the performance of the proposed transformer model with

various components disabled against the fully configured model. To make the comparison

more salient, Figure W24 shows the performance deviations in mean cross entropy compared

to the fully configured model for each ablation model.

We first remove the positional encoder from the proposed transformer. Since the posi-

tional encoder allows the model to recognize the order of touchpoints, its absence prevents

the transformer from distinguishing between close and distant events, effectively reducing the

history to a “bag of words.” As expected, this leads to a performance decline, as confirmed

by the ablation experiment results.

Secondly, using attention masks, we restrict the self-attention mechanism to focus solely

on the immediate preceding period, masking all other past periods during the prediction

of the current period. This step essentially turns the transformer into a first-order Markov

model. If transformer relies on self-attention to identify the inter-temporal relationship,
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Table W20: Transformer Ablation Experiment on AR Datasets

Mean Cross Entropy with DGP Probability Mean AUC

DGP Proposed
Trans-
former

Transformer
without
Positional
Encoder

Transformer
with

Attention
Mask

Transformer
with
Single
Head

Proposed
Trans-
former

Transformer
without
Positional
Encoder

Transformer
with

Attention
Mask

Transformer
with
Single
Head

No Calendar Effect

AR1 0.4521 0.4522 0.4521 0.4529 0.6025 0.6021 0.6009 0.6001

AR3 0.4494 0.4597 0.4657 0.4602 0.6624 0.6260 0.5913 0.6165

AR5 0.4707 0.4816 0.4982 0.4775 0.6790 0.6478 0.5933 0.6618

Weak Calendar Effect

AR1 0.452 0.4662 0.4523 0.4525 0.6950 0.6589 0.6940 0.6932

AR3 0.3973 0.4168 0.4082 0.4015 0.7067 0.6428 0.6794 0.6964

AR5 0.4735 0.5066 0.5065 0.4837 0.7286 0.6525 0.6640 0.7107

Strong Calendar Effect

AR1 0.4728 0.5236 0.4957 0.4744 0.8047 0.7404 0.7791 0.8029

AR3 0.3563 0.4432 0.3793 0.3568 0.8359 0.6863 0.8073 0.8353

AR5 0.4196 0.5353 0.4708 0.4191 0.8586 0.7360 0.8140 0.8588

Figure W24: Mean Cross-Entropy Deviation of Ablation Models Compared to the Fully
Configured Model on AR Datasets
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one would expect the performance to decline significantly when the attention is masked,

and such gap will enlarge as the order of the AR DGP becomes larger. Note that for AR1,

however, the performance will not change because the prediction only relies on the immediate

preceding period. Our simulation results further confirm this (See Figure W24 Transformer

with Attention Mask).

Furthermore, identifying calendar effects relies on the time information of each touch-

point, which is embedded in the positional encoding. Thus, compared with the full model

specification, the model performance without the positional encoder will decline more when

there is a calendar effect in the DGP (Figure W24 middle and right sub-figures), compared

with when there is no calendar effect (Figure W24 left sub-figure). We observe that as the

calendar effect becomes stronger, the performance gap between with and without the posi-

tional encoder also becomes larger, showcasing its the important role in identifying the time

effects.

Lastly, we reduce the number of heads in the transformer and compare the performance

of one head with the default of four heads. The results show that multiple heads give better

prediction accuracy (see Figure W24 Transformer with Single Head) than one head, although

the performance gap is relatively small because the DGP is not very complex.

We repeat all the ablation experiments on another simulated dataset – the mixture DGP,

as described above. We observe varying degree of performance decline when different com-

ponents are shut off (see Table W21 and Figure W25). Notably, reducing the number of

heads has a larger impact on the mixture DGP compared with the AR DGPs, highlighting

the critical role of multiple heads in modeling more complex relationships.
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Table W21: Transformer Ablation Experiment on the Mixture DGP

Variable Mean Cross Entropy Mean AUC

Proposed
Trans-
former

Transformer
without
Positional
Encoder

Transformer
with

Attention
Mask

Transformer
with
Single
Head

Proposed
Trans-
former

Transformer
without
Positional
Encoder

Transformer
with

Attention
Mask

Transformer
with
Single
Head

Channel 1 0.6605 0.6618 0.6609 0.6618 0.5312 0.5031 0.5257 0.5073

Channel 2 0.4959 0.4965 0.4962 0.4965 0.5241 0.4982 0.5154 0.5059

Channel 3 0.4072 0.4085 0.4079 0.4085 0.5391 0.5026 0.5250 0.5074

Purchase 0.5383 0.5409 0.5387 0.5404 0.5495 0.5045 0.5444 0.5169

Figure W25: Mean Cross-Entropy Deviation of Ablation Models Compared to the Fully
Configured Model on the Mixture DGP
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Web Appendix F: Additional Details and Tables on the Simulation Experiments

Autoregressive Model for Simulation

In the Simulation section, we use the autoregressive (AR) model with different orders (1,

3, and 5) as the underlying DGP. Here we provide the details on model specifications.

In each period t, a customer i first chooses whether to visit through a channel c, then

decide whether to make a purchase at the end of visit. We simulate three marketing channels

(c = 1, 2, 3). Let yict ∈ {0, 1} denote whether the customer i has a visit through channel c

at period t, and pit ∈ {0, 1} denotes whether the customer i makes a purchase at the end of

period t. The utility uc
it for channel c at t is influenced by the customer’s visit and purchase

behaviors in the previous L periods (L = 1, 3, 5). Specifically, for t > L,

P (yict = 1) =
1

1 + exp (−uc
it)

,

uc
it = αc +

∑
c′=1,2,3

L∑
l=1

βc
c′lyic′,t−l +

L∑
l=1

ρclpi,t−l.

(W9)

where αc is the baseline utility for channel c. For the first L periods, uc
it = αc. βc

c′l is the

coefficient that represents the influence of a visit through channel c′ at t − l on utility for

channel c at t. ρcl is the coefficient that represents the influence of a purchase at t − l on

utility for channel c at t.

If the customer has a visit through any of the three channels, at the end of the visit, they

make a decision on whether to make a purchase. The utility for purchase up
it is constructed

similar to the channel utility, which takes the form

up
it = αp +

∑
c′=1,2,3

L∑
l=1

βp
c′lyic′,t−l +

L∑
l=1

ρpl pi,t−l. (W10)

Similarly, αp is the baseline utility for purchase. For the first L periods, up
it = αp. β

p
c′l is
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the coefficient that represents the influence of a visit through channel c′ at t − l on utility

for purchase at t. ρpl is the coefficient that represents the influence of a purchase at t− l on

utility for purchase at t. Conditional on having at least one visit, the purchase decision is

modeled by P (pit = 1) = 1/ (1 + exp (−up
it)).

All coefficients are drawn from two uniform distributions where

αc, αp ∼ Uniform (−2,−1) ,

βc
c′l, ρ

c
l ; β

p
c′l, ρ

p
l ∼ Uniform (−1, 1) .

(W11)

Calendar effects. We further simulate day-of-week and month-of-year calendar effects on

top of the AR process described above. The updated utility for channel c is

uc
it = αc +

∑
c′=1,2,3

L∑
l=1

βc
c′lyic′,t−l +

L∑
l=1

ρclpi,t−l

+
7∑

d=1

δd · IDoW(t)=d +
12∑

m=1

λm · IMoY(t)=m.

(W12)

δd is the coefficient for the effect of the d-th day of the week ( d = 1, 2, ..., 7, with d = 1 for

Sunday and d = 7 for Saturday). IDoW(t)=d is the indicator function, which equals to 1 if

period t corresponds to day d, otherwise 0. λm is the coefficient for the effect of the m-th

month (m = 1, 2, ..., 12). IMoY(t)=m is the indicator function which equals to 1 if time t falls

in month m, otherwise 0.

Similarly, the utility for purchase with calendar effects is

up
it = αp +

∑
c′=1,2,3

L∑
l=1

βp
c′lyic′,t−l +

L∑
l=1

ρpl pi,t−l

+
7∑

d=1

δd · IDoW(t)=d +
12∑

m=1

λm · IMoY(t)=m.

(W13)

We draw two sets of coefficients for calendar effects which we call “weak” and “strong”

calendar effects. The coefficients for weak calendar effects are drawn from two uniform
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distributions where

δweak
d ∼ Uniform (−0.5, 0.5) ,

λweak
m ∼ Uniform (−1, 1) .

(W14)

And the coefficients for strong calendar effects are drawn from

δstrongd ∼ Uniform (−2, 2) ,

λstrong
m ∼ Uniform (−2, 2) .

(W15)

Simulation Experiment Results

We present complete simulation experiment results in the tables below.

Table W22: Model Comparisons on Simulated HMM & Point Process
Datasets

Model
Mean Absolute Deviation from the Best Performing Model

across the 50 Simulated Datasets

Cross Entropy AUC Balanced Accuracy F1 Score

DGP - HMM

Transformer 0.0004 0.0099 0.0116 0.0006

LSTM 0.0025 0.0281 0.0240 0.0011

HMM 0.0055 0.0042 0.0020 0.0014

Point Process 0.1025 0.0195 0.0160 0.0011

DGP - Point Process

Transformer 0.0003 0.0091 0.0113 0.0050

LSTM 0.0016 0.0272 0.0245 0.0117

HMM 0.0020 0.0316 0.0177 0.0089

Point Process 0.0101 0.0086 0.0003 0.0005

a) Cross entropy measures the alignment between the distribution of model estimated prob-
ability and the true data-generating probability. b) The mean absolute deviation is the
absolute deviation of each model from the best performing model averaged across all 50
datasets.
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Table W23: Model Comparisons on Simulated AR Datasets

DGP Mean Cross Entropy Mean AUC

Proposed

Transformer
HMM

Point

Process
LSTM

Proposed

Transformer
HMM

Point

Process
LSTM

AR1 0.4521 0.4603 0.4675 0.4521 0.6025 0.5590 0.5307 0.6013

AR3 0.4494 0.4692 0.4754 0.4391 0.6624 0.5894 0.5530 0.6918

AR5 0.4704 0.4972 0.5106 0.4413 0.6810 0.5963 0.5693 0.7460

AR1 with Weak Calendar Effect 0.4520 0.4871 0.4962 0.4572 0.6950 0.5823 0.5522 0.6805

AR3 with Weak Calendar Effect 0.3973 0.4312 0.4351 0.4022 0.7067 0.6005 0.5638 0.6929

AR5 with Weak Calendar Effect 0.4735 0.5236 0.5407 0.4521 0.7286 0.5844 0.5607 0.7661

AR1 with Strong Calendar Effect 0.4728 0.6033 0.6155 0.5079 0.8047 0.6454 0.6207 0.7656

AR3 with Strong Calendar Effect 0.3563 0.4901 0.4791 0.3471 0.8359 0.5783 0.5724 0.8461

AR5 with Strong Calendar Effect 0.4196 0.5973 0.6194 0.3938 0.8586 0.6410 0.5610 0.8775

Table W24: Transformer and LSTM Performance under Different Sample Size
under AR5 DGP

Sample Size Mean Cross Entropy Mean AUC

Proposed Tranformer LSTM Proposed Tranformer LSTM

10,000 0.4704 0.4413 0.6810 0.7460

20,000 0.4803 0.4406 0.7004 0.7469

50,000 0.4504 0.4404 0.7294 0.7473

100,000 0.4435 0.4402 0.7420 0.7473

Table W25: Model Comparisons under Mixture DGP

Variable Mean Cross Entropy Mean AUC

Proposed

Transformer
HMM

Point

Process
LSTM

Proposed

Transformer
HMM

Point

Process
LSTM

Channel 1 0.6605 0.6616 0.6946 0.6616 0.5312 0.5055 0.5028 0.5115

Channel 2 0.4959 0.4963 0.5009 0.4963 0.5241 0.5034 0.5040 0.5088

Channel 3 0.4072 0.4078 0.4098 0.4081 0.5391 0.5003 0.5033 0.5036

Purchase 0.5383 0.5399 0.5459 0.5403 0.5495 0.5065 0.5174 0.5175
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Time Series Analysis of the Application Data

We take three channels – Direct, Natural Search, and Email in our applications along

with the booking variable, and fit these variables with a simple logistic regression to extract

the time fixed effect,

yct = logit(λct), (W16)

where yct is the binary variable indicating whether a customer makes a visit or purchase

at period t for variable c, and λct denotes the time fixed effect to be estimated for variable

c. Then we treat λct as a time series for each c, and examine the ACF (Autocorrelation

Function) and the PACF (Partial-Autocorrelation Function) plots of λct for each variable c.

We present the two plots for the purchase variable and the direct visit variable respectively

in Figure W26 and Figure W27 below.

Figure W26: ACF and PACF Plots for Purchase Time Fixed Effect

Figure W27: ACF and PACF Plots for Direct Visit Time Fixed Effect

Based on the plots, we fit an ARMA(2,2) model2 to each λct. Then we take the coefficients

2We also fit ARMA models of different orders and use the AIC and BIC to guide order selection.
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and generate a new time series uct based on the coefficients of each model. The random

errors are sampled from the standard normal distribution. Figure W28 shows the ACF

plot of the simulated series for the purchase variable, and Figure W29 shows the ACF plot

of the simulated series for the direct visit variable. Both figures show that the generated

series have similar autocorrelation structure as the real data shown in Figure W26, W27.

Based on the generated time fixed effect uct, we simulate channel visits from the logistic

function P (yict = 1) = 1/ (1 + exp (−uct)), where yict denotes whether customer i has a visit

at channel c at period t. Conditional on having a visit, the purchase decision is simulated by

P (pit = 1) = 1/ (1 + exp (−up
t )), where pit is the purchase decision and up

t is the generated

time fixed effect for purchase.

Figure W28: ACF Plot for Simulated Purchase Time Fixed Effect

Figure W29: ACF Plot for Simulated Direct Visit Time Fixed Effect
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Web Appendix G: Results for 6-Hour and 24-Hour Periods

The application data in the main text is organized into 12-hour periods. Here, we conduct

a robustness check using alternative period lengths of 6 hours and 24 hours. Table W26 shows

the in-sample and out-of-sample AUC and balanced accuracy for 6-hour period. And Table

W27 shows the results for 24-hour period. Both results are comparable to the result of the

12-hour period.

Table W26: Performance of Proposed Transformer on 6-Hour Period

Dependent Variable AUC Balanced Accuracy

In-Sample Out-of-sample In-Sample Out-of-sample

Purchase

Booking 0.9592 0.9285 0.9063 0.8673

Weekend Stay Booking 0.9658 0.9189 0.9093 0.8668

Channel Visit

AFFILIATE 0.9959 0.9246 0.9824 0.8595

B2B 0.9992 0.8986 0.9939 0.8231

DIRECT 0.9322 0.9012 0.8706 0.8302

DISPLAY 0.9914 0.9083 0.9655 0.8357

ECONFO AND PRE-ARRIVAL EMAIL 0.9852 0.9246 0.9622 0.8556

EMAIL 0.9841 0.9267 0.9607 0.8409

EMERGING TECHNOLOGIES 0.9973 0.8926 0.9811 0.8319

NATURAL SEARCH 0.9567 0.9058 0.9110 0.8392

PAID SEARCH 0.9770 0.9015 0.9485 0.8217

REFERRAL ENGINE 0.9963 0.9273 0.9824 0.8634

RESLINK 0.9943 0.9322 0.9731 0.8622

SOCIAL MEDIA 0.9992 0.9218 0.9953 0.8581

UNPAID REFERRER 0.9782 0.9287 0.9393 0.8471
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Table W27: Performance of Proposed Transformer on 24-Hour Period

Dependent Variable AUC Balanced Accuracy

In-Sample Out-of-sample In-Sample Out-of-sample

Purchase

Booking 0.9344 0.9111 0.8605 0.8499

Weekend Stay Booking 0.9359 0.9038 0.8636 0.8474

Channel Visit

AFFILIATE 0.9926 0.9112 0.9703 0.8334

B2B 0.9993 0.9404 0.9894 0.8911

DIRECT 0.9233 0.8831 0.8556 0.8084

DISPLAY 0.9748 0.9004 0.9234 0.8222

ECONFO AND PRE-ARRIVAL EMAIL 0.9745 0.9016 0.9231 0.8137

EMAIL 0.9749 0.9064 0.9277 0.8176

EMERGING TECHNOLOGIES 0.9990 0.8931 0.9930 0.8193

NATURAL SEARCH 0.9319 0.8865 0.8614 0.8126

PAID SEARCH 0.9581 0.8770 0.9133 0.7999

REFERRAL ENGINE 0.9807 0.9114 0.9334 0.8450

RESLINK 0.9807 0.9025 0.9399 0.8320

SOCIAL MEDIA 0.9943 0.8967 0.9678 0.8369

UNPAID REFERRER 0.9678 0.9139 0.9131 0.8301
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