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Abstract

When analyzing a sequence of customer interactions, it is important for firms to un-
derstand how these interactions align with key objectives, such as generating qual-
ified customer leads, driving conversion events, or reducing churn. We introduce a
transformer-based framework that models customer interactions in a sequence similar
to how a sentence is modeled as a sequence of words by Large Language Models. We
propose a heterogeneous mixture multi-head self-attention mechanism that captures
individual heterogeneity in touchpoint effects. The model identifies self-attention pat-
terns that reflect both population-level trends and the unique relationships between
touch points within each customer journey. By assigning varying weights to each at-
tention head, the model accounts for the distinctive aspects of the journey of each
user. This results in more accurate predictions, enabling precise targeting and outper-
forming existing approaches such as hidden Markov models, point process models, and
LSTMs. Our empirical application in a multichannel marketing context demonstrates
how managers can leverage the model’s features to identify high-potential customers
for targeting. Extensive simulations further establish the model’s superiority over com-
peting approaches. Beyond multichannel marketing, our transformer-based model also
has broad applicability in customer journeys across other domains.
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INTRODUCTION

With advances in Artificial Intelligence (AI), its integration into marketing has opened

new possibilities for creativity, personalization, and efficiency. The recent focus has been

mainly on the more flashy generative capabilities of AI for content creation, search engine

optimization, idea generation, and improving customer support through chatbots (Carlson

et al. 2023; Schipper et al. 2023; Huang and Rust 2024). However, AI’s proficiency in

handling large datasets and rapid computations – the qualities that emphasize its predictive

capabilities – have remained largely untapped in marketing. Although some researchers

have used deep learning models to analyze unstructured data such as text and images,

the application of these techniques directly to customer panel data for actionable insights

is still limited (Deveau, Griffin, and Reis 2023). To address this, we have developed a

specialized AI-based transformer model dedicated to analyzing customer journeys, offering a

novel contribution to the field. Our research demonstrates how AI methodologies can discern

complex patterns within data, enabling firms to understand underlying trends in customer

behavior and improve marketing decision making.

Understanding the customer experience and journey is central to a firm’s growth and

serves as an appropriate application to showcase AI’s potential. With increasing channels and

touchpoints such as social media interactions, email clicks, ad exposures, and search queries,

customer journeys have become increasingly complex (Wedel and Kannan 2016; Lemon and

Verhoef 2016). This complexity poses significant challenges to modeling, understanding,

and proactively managing customer journeys. If a firm uses multiple channels to reach its

customers, how does a specific channel and the timing of the interaction nudge a customer

towards conversion? What role does each touchpoint play in the conversion of a customer?

Previous research has approached these issues from various perspectives, including un-

derstanding customer motivations from clickstream data (Moe 2003), exploring the search

process (Dang, Ursu, and Chintagunta 2020), estimating channel attributions (Li and Kan-
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nan 2014; Danaher and van Heerde 2018), and modeling the journey using Hidden Markov

Models (Netzer, Lattin, and Srinivasan 2008; Abhishek, Fader, and Hosanagar 2012) and

point process models (Goić, Jerath, and Kalyanam 2021). These models account for in-

terdependent customer interactions, necessitating the consideration of prior and subsequent

encounters to fully understand a single interaction. For example, a customer’s usage of a

search engine may signify either early-stage information gathering or later-stage purchase

intent (Dang, Ursu, and Chintagunta 2020). Without information on prior and subsequent

visits, it becomes challenging to determine the purpose of a single search engine visit. How-

ever, as the number of channels and touchpoints increases, understanding of the full journey

becomes even more difficult as parameter space grows exponentially (Wedel and Kannan

2016).

To address these challenges, we leverage recent developments in AI and propose a transformer-

based modeling framework to analyze large number of customer interactions across numerous

channels. Our model understands and evaluates each interaction holistically by considering

its context within the sequence of all prior and subsequent interactions in a customer jour-

ney. The transformer is a deep learning model designed to process sequential data in natural

language processing (NLP) (Vaswani et al. 2017), underpinning architectures like GPT or

Gemini. Although NLP and marketing problems may seem different, the transformer’s abil-

ity to model each word within its context also applies to marketing settings. Specifically,

it can handle a series of customer interactions as analogous to sequences of words in a sen-

tence. The key innovation in transformers is the self-attention mechanism, which captures

relationships between words and their context using attention weights. Attention weights

in our model are trained to capture relationships between specific interactions and all prior

ones, allowing for holistic evaluation. For example, Gmail’s Smart Compose uses transform-

ers to predict next words based on initial inputs (Chen et al. 2019). Applied to marketing,

our model predicts visit and purchase probabilities in subsequent periods based on interac-

tion history. It can also be applied to sequence-level classification tasks, such as predicting
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customer churn or lifetime value.

Advances in sequence modeling from computer science offer substantial value to mar-

keters. While traditional models often consider only short-term dependencies, studies have

shown long-term dependencies significantly impact customer journeys (Mela, Gupta, and

Lehmann 1997; Zantedeschi, Feit, and Bradlow 2017). Researchers have applied attention

mechanisms to study the customer journey, with Zhou et al. (2019) using RNNs and a

global attention mechanism to identify users’ funnel stages, improving click-through and

conversion rates by customizing messages. Recent marketing research recognizes the effi-

cacy of deep learning methods in time series analysis. For instance, Valendin et al. (2022)

employed LSTMs to predict customer transactions, outperforming traditional models like

the Pareto/NBD model (Schmittlein, Morrison, and Colombo 1987) and the Gaussian Pro-

cess model (Dew and Ansari 2018). Transformers can capture these long-term dependencies

directly from data without relying on predefined functional forms.

The transformer model, with its self-attention mechanism, dynamically determines rela-

tionships between touchpoints, handling complex nonlinear interactions efficiently (Vaswani

et al. 2017; Dai et al. 2019). In this context, transformers can be compared to VAR models

(Dekimpe and Hanssens 1999, 2024), but while VAR models assume linear relationships and

fixed lags, transformers handle complex nonlinear relationships and determines lags dynam-

ically through self-attention mechanisms. Compared to models like HMMs, point-process

models, and LSTMs, (see Table W1 in Web Appendix A), transformers offer greater flexi-

bility and scalability, managing large numbers of channels and touchpoints effectively.

Our contributions highlight the power of transformers and its superiority over existing

models in providing marketing insights not easily attainable with traditional methods. We

extend the transformer model to handle customer-level heterogeneity, enhancing its appli-

cability to provide descriptive insights into latent self-attention patterns characterizing an

individual’s customer journey. We demonstrate how the transformer model efficiently han-

dles a large number of unique touchpoints and delivers results faster with superior prediction
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performance when compared to that of existing methods. In our application to customer

journeys in the context of multi-channel marketing, our model predicts the evolvement of

purchase probability and touchpoint interaction over time for each customer based on their

history. Using the model results, managers can understand and determine the impact of

the timing and the channel used to target a customer. We examine the varying impact

of each channel at different points in the customer journey on conversion, highlighting the

impact of touchpoint timing and the importance of the sequential order of events. We con-

duct several analyses to illustrate how the transformer’s superior predictive performance can

lead to increased ROI by targeting the high potential customers. We also outline how, with

the availability of appropriate marketing action data, the model’s predictions can be trans-

lated into suggested actions and how these actions might meaningfully impact marketing

performance.

We empirically compare our results with other models – Hidden Markov Models (HMM),

point-process models, and Long Short-Term Memory (LSTM) – and demonstrate superior

predictive performance and deeper managerial insights than those produced by these com-

petitive models. One may question whether the proposed transformer’s performance depends

on the data. That is, compared to other benchmarks does the transformer only perform best

on datasets whose data-generating processes (DGP) favors sparse and autocorrelated data?

We conduct extensive simulation studies to evaluate the proposed transformer model against

these competing models across datasets with different DGPs, a mixture of DGPs and sample

sizes. These studies establish the boundary conditions under which the proposed transformer

model performs comparably to the other approaches. However, under complex data patterns

and large sample size – as is found in almost all commercial databases – the transformer

significantly outperforms all competing models. Additionally, ablation experiments reveal

how specific components of the transformer model provide a high degree of flexibility, effec-

tively capturing underlying relationships and excelling in predictive tasks. Our model can

be generalized to predict future events in other contexts. For instance, banks can forecast
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customer churn by leveraging interaction history (Deveau, Griffin, and Reis 2023). Customer

service departments can identify critical incidents shaping customer experience. Healthcare

providers can anticipate patient outcomes by examining patient journeys.

The next section provides an overview of the model framework, focusing on adapting the

transformer’s multi-head self-attention mechanism to our marketing context.

MODEL

Figure 1 is an illustration of the model architecture. The input to the model is the

customer journey data in a time-series format (see 1 at the left bottom of Figure 1). In

the multi-channel marketing context, a customer interaction in the journey takes the form

of a customer’s visit through a channel or conversion at a visit. In each period t, the

firm observes one of a customer’s two states for each type of customer interaction: (1) if the

customer interacts with the firm, or (2) no activity if the customer does not interact. Suppose

there are S possible types of customer interactions that the firm can observe. We encode the

customer journey sequence using an approach similar to the multi-hot encoding, capturing

interactions per individual customer per time period. {Xnst} (s = 1, 2, ..., S; t = 1, 2, ..., T )

is the matrix that contains the user n’s interaction history with the firm from t = 1 to T .

Xnst = 1 when interaction s occurs in t and Xnst = 0 when s is not observed. The number

of types of interactions, S, should depend on the granularity of the data. For example, if

the available data only indicates whether a display channel was accessed, it can be coded

as a binary variable (0/1). On the other hand, if information about the specific ad copy

shown on the display is available, the combination of display, with different ad copy can be

represented by multiple binary variables, each indicating which ad copy was displayed.

Because our model takes each individual’s history as input, the subscript n is omitted

in the following description. Let Xt = [X1t, X2t, ..., XSt], Xt can be viewed as an element

(token) in the input sequence, similar to a token in a vocabulary used in NLP. The model

takes an individual customer’s history X0,X1, ...,Xt as a unit of input for processing, and
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outputs predictions forXt+1, and repeats this for every t = 1, ..., T−1.During model training,

the prediction is compared with the actual target label at t + 1, and the model works to

minimize the loss between these predicted and actual values. Researchers can set the target

to various outcomes of interest such as visit through a channel or purchase incidence. Note

that although the model generates predictions for the next period, one can predict multiple

periods forward by predicting recursively based on previous predictions, as is done by other

generative AI models.

In the case when continuous variables need to be incorporated1, they are directly con-

catenated with the Xt vector to form a token. For example, suppose there are L continuous

variables Y1t, Y2t, ..., YLt, such as revenue or demographic information, etc. In this case, a to-

ken representing a customer’s journey would be constructed asXt = [X1t, ..., XSt, Y1t, ..., YLt].

Shared Embeddings and Separate Encoders

In this task, our prediction targetXt+1 is an S-dimensional vector (or (S+L)-dimensional

vector in the case of mixed variable types). This makes the prediction a multi-objective

optimization problem, which is also called multi-task learning in machine learning literature

(Caruana 1997). By exploiting the commonalities among different tasks, the model can

learn patterns more efficiently. In the customer journey scenario, learning to predict channel

visits should help the model better predict conversion, and vice versa. However, optimizing

multiple objectives at the same time unavoidably forces the model to make trade-offs between

the performances on different tasks, especially when there are many model components

shared across tasks (Crawshaw 2020). To strike a balance, when predicting the outcome

for each type s, we first use a shared embedding layer to convert the touchpoint sequence

Xt to embeddings (2 in Figure 1), and then assign an independent set of encoders for each

prediction target s (3, 4, and 5 in Figure 1). This means that inside the model, the same

1Although we do not incorporate continuous variables in this paper, we have conducted analysis on a patient

journey dataset in the healthcare setting that contains continuous variables. The results can be provided upon

request.
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user activities will be coded with the same embedding vector in the first step to facilitate

learning, then the model explores substantive differences in predicting outcomes for each

type of user activity. The shared embedding can be viewed as analogous to a common latent

state variable in statistical models such as Hidden Markov Models (HMM).2

The embedding vectors represent different states in a multidimensional vector space where

the relative positions of two vectors represents the similarity of the corresponding states. For

NLP transformers, word embeddings pretrained from other language models are often used

for transfer learning. Because our customer journey contexts are unique in the empirical

setting and there is no existing model to learn from, the parameters of the embedding

transformation are optimized based on the data during the training process. We transform

the Xt to an embedding vector xt(xt ∈ Rdmodel) using a linear transformation. xt has the

dimension of dmodel, which is a hyperparameter specified by the modeler. This is equivalent to

assigning a vector to represent each type of interaction s in a dmodel-dimensional space, while

using the sum of the vectors to represent the period when there are multiple interactions

happening within the same period, i.e., Xst = 1 for multiple s. When there are continuous

variables Ylt(l = 1, ..., L), this transformation essentially uses a vector in the same dmodel-

dimensional space to represents one unit of each continuous variable Yl.

So far the embedding vector Xt has not confronted the order information of the tokens. It

is only a “bag of words” from the view of the model encoder. Transformers use the positional

encoder to add the order information. The positional encoder is essentially a set of vectors

added to the embedding vector, with a different vector added to every different t. Thus, Xt

with the positional encoder added can have a time-varying impact on predictions even when

the type of user activities is the same. The positional encoding of t-th position in a sequence

is denoted as PEt. It has the same dimension dmodel as the embedding vector xt. In NLP

tasks, the positional encoding is added to the word embedding to account for the case in

which the same word may have varying representations when used in a different position

2We compare the performance of the proposed transformer with that of HMM in the Model Comparison section.

We thank the Associate Editor for suggesting this analogy.
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Figure 1: The architecture of the model

within the sentence, which yields the updated embedding x̃t = xt + PEt. In our setting, we

use positional encoding to account for the differential effects of the same type of interactions

that happen at different times, aka “time effect.” For example, a display click-through at the

beginning of the customer journey should be different from a display ad click-through near

the end of the customer journey.

Following Vaswani et al. (2017), we use sine and cosine functions for positional encoding,

which takes the form PEt,2τ = sin (t/100002τ/dmodel) and PEt,2τ+1 = cos (t/100002τ/dmodel)

(τ = 0, 1, 2...; 2τ ≤ dmodel). 2τ , 2τ + 1 are the even and odd index of the elements in the

positional encoding vector PEt (assuming indexed from 0). The sine and cosine functions

are one of the simplest ways to project the ordinal position numbers to a periodic sequence.

Instead of one periodic function, the transformer uses a set of periodic functions with varying

wavelengths, ranging from 2π(τ = 0) to 10000 ∗ 2π(2τ = dmodel), to encode the positional

effects. Each 2τ th and (2τ +1)th element of the positional encoding vector PEt captures the

time effect at a different length scale. A smaller τ captures the time effect at a smaller scale

and a larger τ captures time effect at a larger scale. This form of positional encoding assumes
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periodic positional effects. Such configuration can capture the day-of-week or month-of-year

effect that commonly affect customer’s shopping behavior. From another perspective, the set

of sine and cosine functions resemble the components in Fourier series, which can converge

to arbitrary periodic functions with defined Fourier coefficients, thus capturing potentially

non-linear time effects that impacts customer’s shopping behavior.

With positional encoding added, embedding vectors enter a stack of encoder layers (see

3 in Figure 1), the heart of the transformer architecture. Starting from the encoder, the

model diverges into separate paths for each prediction task s. We assign an independent set

of encoder layers for each prediction target of interaction type s (3-5 in Figure 1). Each layer

comprises two sub-layers: a self-attention layer and a feed-forward neural network (FFNN).

In NLP tasks, the self-attention layer transforms input word embeddings, ensuring that

the relative position of the output embedding vectors not only reflects its original semantic

closeness in the input embedding, but also accounts for their dependence in the context. The

“attention” refers to the distributed weight to words in a sentence (reflecting the relevance

of the words) while focusing on one word at a time (e.g., the word “it” in Figure 2). In the

context of customer journey data, ”attention” refers to the weight or relevance of the past

customer interactions on the specific interaction in focus. That is, we apply self-attention

to uncover the dependence of the current customer interactions on the previous interactions

in a journey, ignoring (masking) the subsequent interactions. Thus, we consider only past

interactions during encoding a specific interaction (Figure 2b). In other words, only the past

can predict the present; the future tells us nothing about now.

Self-Attention

The self-attention layers are the key innovation of the transformer. At the core of an

attention-based approach is the ability to compare an item of interest to a collection of

other items in a way that reveals their relevance in the current context. In the case of

self-attention, the set of comparisons are to other elements within a given sequence. The
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(a) Attention in sentence (b) Attention in customer journey

Figure 2: Illustrations of Multi-head Self-attention in Sentence and Customer Journey

simplest form of comparison between elements is a dot product. For two vectors xi and xj

(i, j ∈ {1, ..., T}) in the input sequence, their dot product xi ·xj reflects their relationship – a

positive larger value indicates higher proximity in the embedding space. Because the value of

the dot products can range from −∞ to ∞, it is usually more desirable to normalize it over

all items in the context, which yields a weight distribution of αij =
exp (xi·xj)∑i
k=1 exp(xi·xk)

,∀j ≤ i. 3

Given the weight αij, a representation vector that incorporates the context information can

be calculated by taking the weighted sum of all inputs seen so far (j ≤ i), zi =
∑

j≤i αijxj.

Now instead of a single xi that only contains information about an individual item, the

weighted sum zi incorporates all information from the input, with different weights assigned

to each item based on similarity.

In actual modeling, transformers go one step further by allowing a more flexible way of

generating the weight αij. Specifically, each input embedding can play three different roles

in the attention process described above. First, it can be the current focus of attention being

compared to all of the other preceding inputs, i.e., the xi. This role is referred to as a query.

3This equation for αij presented here is for demonstration purposes only. The actual form of αij used in the

model is provided in Equation 2.
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Second, it can serve as a preceding input being compared to the current focus of attention,

which is referred to as a key. In the above example, xj in αij is a key. Lastly, it can serve

as a value being weighted and summed up, i.e., the xj in the formula of zi. The transformer

captures these three different roles, and introduces three weight matrices WQ, WK and W V

for each role separately. These weights will be used to project each input vector xi into a

representation of its role as a query, key, or value.

qi = WQxi; ki = WKxi; vi = W V xi. (1)

With the projection vectors qi, ki and vi, the transformer uses the dot product between the

query qi and the key kj, rather than the original xi and xj, to generate a weight distribution

over other items in the context. The attention weight used in actual modeling is given by

αij = softmax

(
qi · kj√

dk

)
, (2)

where dk is a scalar, which is the dimensionality of the query and key vectors used to scale

the dot products to a more suitable range for the subsequent processes. The transformer

decoder predicts the next i+1 item based on information in zi =
∑

j≤i αijvj, which preserves

information from all precedent inputs. From a reversed model training perspective, the αij,

or theWQ, WK andW V parameters, are trained in a way that reflects how much dependence

to put on each precedent items when predicting the item at i+ 1.

In the context of a multi-channel customer journey, consider the following five interactions

in this specific sequence over time: e-mail, paid search, email, display and direct & booking

as shown in Figure 2b. A query involving direct & booking is the relevance to itself when

compared to all other interactions, while the key could examine how e-mail in the first

position is relevant to direct & booking or e-mail in the third position is relevant to direct &

booking or how paid search is relevant to direct & booking and so on. The query and the key

are multiplied together to produce the attention scores. The value will be the representation
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of each past interaction that is being weighted by its respective attention score to incorporate

its relevance on direct & booking. See Figure 2b.

Multi-head Self-Attention with Customer Heterogeneity

To capture different patterns of word dependence, transformers use multi-head self-

attention layers. Each head, denoted by h, trains an independent set of attention projection

matrix WQ
h , WK

h and W V
h , which can learn different aspects of the relationships that exist

among inputs at the same level of abstraction. In Figure 2a, when processing the focal

word “it”, one head (blue) puts more weight on “cat”, while another head (red) puts more

weight on “hungry.” To combine the information from multiple heads, Vaswani et al. (2017)

concatenates zih from all heads h = 1, ..., H and uses a matrix to project the concatenated

vector [zi1, ..., ziH ] to form a new embedding.

In the context of the customer journey, the multiple heads capture different types of

relevance relationships among the interactions using the self-attention patterns. For example,

the first head’s self-attention pattern could weigh the relevance of the e-mail interactions on

direct & booking much more than other touchpoint interactions. The second head’s self-

attention pattern could weigh the relevance of firm-initiated touchpoints such as paid search

and display on direct & booking more than other interactions. The other heads could

capture other different self-attention patterns existing in the relevance relationships among

the interactions. This feature of the transformer makes it much more flexible to model

the relationships among interactions as compared to models such as HMM, point process

or LSTM. In addition, we extend the transformer model to incorporate individual-level

heterogeneity among consumers.

While modern marketers want to predict individual customer behaviors, most machine

learning algorithms use the same set of parameters to model all inputs, ignoring individual

differences. The heterogeneity across inputs is usually not the primary goal of ML models.

Even though the way one person phrases a sentence will be very different from another per-
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son in terms of word selection, tone, etc., this heterogeneity is generally ignored by most

NLP models. For customer journey, we extend the transformer to incorporate individual

heterogeneity, capturing the individual level variations in the relationships between events.

For example, firm-initiated channels such as paid search and display ads may have a stronger

effect on purchase for some customers than others. Uncovering and identifying such hetero-

geneity can help with user profiling and targeting. To incorporate individual heterogeneity,

we propose and estimate a mixture-head attention mechanism, which is a variant of the

transformer’s multi-head self-attention. After getting the vector zih from head h = 1, ..., H,

an individual n’s vector embedding of period t (t = i) is a weighted sum of zih. And the

weights of all heads sum up to unity (one). The new embedding takes the form

z̄in =
H∑

h=1

ωnhzinh, (3)

where ωnh is the individual n’s weight for head h and
∑H

h=1 ωnh = 1. The weights are

estimated together with other parameters in the model training process. This renders it

very similar to a finite mixture model for preference estimation.

The output of the attention layer is added to the original input embedding in a step called

the residual connection. Afterwards, the summed-up vector is normalized, also known as

layer norm process. These two steps are performed after each sub-layer. After the attention

sub-layer and the layer norm operation, the output embedding goes through a feed-forward

neural network (FFNN) sub-layer. Finally, the embedding is passed through a linear layer

and was projected to proper size for output. For binary outcome variables, the model

incorporates a sigmoid layer as the final activation layer (4 in Figure 1). In our application,

for each position t in the sequence and each interaction type s, a linear layer projects the

embedding to a single dimension, followed by a sigmoid layer that outputs the probability

ps,t+1 for the binary outcome at the next position t+ 1. The target of prediction is decided

by the modeler. It can be the customer’s purchase decision in the following period or other
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customer behavior of interest. More details of the FFNN and sigmoid layers can be found

in Web Appendix A.

Depending on the type of tasks, different loss functions can be chosen to train the model.

Because all variables to be predicted are binary in our application, we use the cross entropy

loss as the loss function between the prediction and the target, and apply weights to balance

the positive and negative class in the classification tasks (See Web Appendix A for a detailed

discussion on loss function and class weighting). We minimize the mean loss across all

dependent variables during the model training. In the case when continuous variables are

present, loss functions such as mean squared error loss can be used.

Multi-step Prediction

By design, the transformer model predictsXt+1 based on the input sequenceX0,X1, ...,Xt.

In practice, however, firms often plan marketing decisions over a longer horizon beyond a

single time step. Therefore, a model’s ability to generate accurate long-term forecasts across

multiple future periods is critical. To evaluate long-term predictive performance, we hold

out the final 20% of the time periods in our dataset. Multi-step predictions are generated

recursively, following standard practice in time-series forecasting. Specifically, the model

first outputs a probability estimate ps,t+1, which is used to generate a prediction of user ac-

tivity X̂s,t+1 via Bernoulli sampling. This predicted value is appended to the input sequence

to form X0,X1, ...,Xt, X̂t+1, which is then used to predict ps,t+2. The process continues

iteratively until the end of the forecast horizon.

Predicting for multiple periods when the model is trained for one-step-ahead prediction

has been shown susceptible to error accumulation problem, i.e., errors from the past are

propagated into future predictions (Venkatraman, Hebert, and Bagnell 2015; Cheng et al.

2006). To mitigate this issue, we repeat the recursive prediction procedure multiple times

and average the resulting probability estimates across runs. This ensemble-style approach

helps stabilize the forecasts and improves reliability, especially over longer horizons.
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APPLICATION

Data

The data for this study is from the hospitality sector. The focal firm uses multiple online

marketing channels, such as paid search, display ads, and emails. Using first-party cookie

data (collected using Adobe SiteCatalyst), the firm obtained a comprehensive history of

customers’ interactions with the firm’s marketing channels. The data set includes 546,745

visits to the firm’s websites clicking through several different channels, made by 92,575 users4

belonging to the firm’s loyalty program, spanning a time period from September 19, 2011, to

December 14, 2011. On average, each user visited the firm’s website about four times, made

one booking, and generated a total revenue of $310 (Table 1). For each visit to the merchant’s

website, we observe the time and the source of the visit, whether a transaction was completed

during the visit, and the revenue generated if the transaction was completed. After merging

some minor sources, we examined visits from thirteen categories of campaign sources. Table

2 summarizes the sources of the visits and conversion rate for each source. About 45% of the

visits represent direct traffic, the next largest being natural search (same as organic search).

In terms of conversion rate, RESLINK5 and B2B have the highest conversion rate because

the visitors are business travelers with predetermined travel plans with conference hotels.

Table 3 summarizes the statistics of the 102,375 transactions in the data set. On average,

about one room is booked for two nights per transaction and the average revenue per booking

is $282. About 38% of the bookings include a weekend stay, an indicator of leisure travel.

Table 1: Descriptive Statistics of Users

Per user N Mean Min Median Max

No. of visits 92,575 4.35 1 2 100

No. of bookings 92,575 1.106 0 1 247

Total revenues 92,575 $310 0 $20 $55,674

4We remove the 58 users who have more than 100 visits during the observation period.
5RESLINK is short for reservation link, which are usually sent by event hosts to attendees.
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Table 2: Visit Source Statistics

Campaign Source N % # Bookings Conversion Rate

DIRECT 246,106 45.0% 50,984 20.7%

NATURAL SEARCH 132,547 24.2% 25,390 19.2%

UNPAID REFERRER 66,474 12.2% 7,840 11.8%

PAID SEARCH 31,262 5.7% 5,559 17.8%

EMAIL 25,169 4.6% 3,721 14.8%

ECONFO AND PRE-ARRIVAL EMAIL 18,888 3.5% 3,138 16.6%

RESLINK 7,598 1.4% 2,441 32.1%

AFFILIATE 6,838 1.3% 1,734 25.4%

DISPLAY 6,557 1.2% 762 11.6%

REFERRAL ENGINE 3,350 0.6% 600 17.9%

SOCIAL MEDIA 924 0.2% 62 6.7%

EMERGING TECHNOLOGIES 658 0.1% 45 6.8%

B2B 374 0.1% 99 26.5%

Total 546,745 100% 102,375 18.7%

Note: a) RESLINK is short for reservation links, which are usually sent by event hosts to
attendees. b) NATURAL SEARCH is often referred to as organic search. c) EMERGING
TECHNOLOGIES mainly consists of the firm’s App users.

Table 3: Descriptive Statistics of Transactions

N Mean Min Median Max

Booked rooms 102,375 1.03 1 1 6

Booked nights 102,375 2.10 1 1 212

Revenue 102,375 $281 0 $172 $22,781

Include weekend stay 102,375 0.38 0 0 1

Model Training and Customer Journey Prediction

We divide the three-month window into 12-hour intervals, resulting in 173 time periods.

We choose the 12-hour window to ensure that a time-window does not have too many

touchpoints within it, which may hinder the modeling of sequence of touchpoints. The 12-

hour windows allows us to have trade-off such issues against sparseness. For each period

t, using the customer’s visit and purchase history up to t, we predict their channel visit

and purchase probabilities for t + 1. The model input is a sparse time series that includes
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both active periods with user activity and inactive periods without it. Since customers can

visit multiple channels within a single period, channel visits are not mutually exclusive,

making the common multinomial assumption inapplicable. Instead, our model predicts each

customer’s likelihood of visiting each channel during each time period6.

We randomly sample 50% (46,288) of the customers as the holdout sample, with the

remaining 50% used for training and validation via five-fold cross-validation. The model

is trained using stochastic gradient descent, a widely used optimization method for deep

neural networks (Farrell, Liang, and Misra 2021). Specifically, we adopt a hybrid approach,

combining two variants of stochastic gradient descent: the Adam optimizer (Kingma and Ba

2014) for the heterogeneous head weights and mini-batch gradient descent for the remaining

parameters. Detailed model training procedures are provided in Web Appendix A.

We split the training, validation, and holdout datasets at the time level: the first 140 time

periods are designated as the calibration period for model training, while the final 33 periods

are reserved to evaluate long-term prediction performance. This evaluation emphasizes the

model’s ability to forecast multiple future periods sequentially, rather than just the next

immediate period. For out-of-sample customer predictions, where head weights are unknown,

we use the average head weight from the training population ω̄h = 1
N

∑
n ωnh as the weight

for each head in the holdout sample. Table 4 reports the in-sample and out-of-sample AUC

for the calibration and holdout periods of the proposed transformer model. For purchase

prediction, Figure 3a shows the ROC curve for the first 140 calibration periods in both

training and holdout samples. The in-sample AUC is 0.9435, and the out-of-sample AUC

is 0.9205. Figure 3b illustrates the prediction performance over the 33 holdout periods

following the calibration period, with an in-sample AUC of 0.8862 and an out-of-sample

AUC of 0.8585. We also present the balanced accuracy and F1 results of model performance

in Web Appendix B.

We randomly select two users from the data to demonstrate individual-level insights and

6Robustness checks with 6-hour and 24-hour intervals are presented in Web Appendix G.
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Table 4: AUC of the Proposed Transformer Model

Dependent Variables Calibration Period Hold-out Period

In-Sample AUC Out-of-sample AUC In-Sample AUC Out-of-sample AUC

Purchase

Booking 0.9435 0.9205 0.8862 0.8585

Weekend Stay Booking 0.9395 0.9119 0.8685 0.8067

Channel Visit

AFFILIATE 0.9937 0.9165 0.9172 0.8228

B2B 0.9994 0.9541 0.8386 0.7502

DIRECT 0.9225 0.8939 0.9018 0.8254

DISPLAY 0.9805 0.9042 0.8664 0.6354

ECONFO AND PRE-ARRIVAL EMAIL 0.9720 0.9176 0.8810 0.8555

EMAIL 0.9740 0.9197 0.8583 0.6834

EMERGING TECHNOLOGIES 0.9939 0.8879 0.3652 0.3579

NATURAL SEARCH 0.9402 0.8944 0.9010 0.7903

PAID SEARCH 0.9576 0.8972 0.8949 0.8332

REFERRAL ENGINE 0.9872 0.9198 0.8868 0.7261

RESLINK 0.9871 0.9197 0.7993 0.5426

SOCIAL MEDIA 0.9973 0.9180 0.8391 0.7978

UNPAID REFERRER 0.9692 0.9223 0.9072 0.8237

Note. a) The input variables include history of all dependent variables. b) The calibration period refers to the initial 140
periods used to train the model, while the hold-out period consists of the final 33 periods reserved for evaluation and have
not been exposed to the model during training. c) In-sample AUC is the performance on the customers in the five-fold
training samples, and out-of-of sample AUC is the performance on the 50% hold-out customers.

(a) Calibration Period (0 ≤ t < 140) (b) Hold-out Period (t ≥ 140)

Figure 3: In-Sample and Out-of-Sample ROC Curve of Conversion Prediction

comparisons that the transformer model delivers. Figures 4a and 4b illustrate how their

conversion probabilities (blue line) evolve over time compared to the baseline purchase prob-

ability (grey line), which assumes no observed visits (Xt = 0 for all t) and reflects the overall
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booking trend in the sample7. User A, who visits via direct channels and natural search

mid-period, has a peak conversion probability of 0.15. In contrast, User B, with more visits

but only via direct channels late in the period, peaks at 0.08. After completing transactions,

User A’s probability falls below the baseline, while User B’s prediction aligns with the base-

line until her first visit on day 56. Despite making 20 direct visits between days 56 and 70

without booking, her probability fluctuates around 0.06 before declining. These examples

highlight how individual visit patterns and population trends jointly influence conversion

predictions. Using the same two customers, we also demonstrate how their probability of

visiting through different channels evolves over time in the Web Appendix B.

(a) User A - Booking Probability

(b) User B - Booking Probability

Figure 4: Predicted Booking Probability of the Subsequent Period

7The three peaks in all predictions are corresponding to the three booking peaks that occur from mid-October

to early November observed in the data. We show the model-free evidence in the Web Appendix B
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Predictive and Descriptive Marketing Insights

The possibility of predicting the evolvement of purchase probabilities at the individual

customer level can help marketers in several ways to increase the return on investment

(ROI) of marketing interventions. First, it can identify customers with high potential to

convert to generate profiles for potential use in lookalike modeling. Second, we can estimate

the time-varying impact weights of a specific intervention (say, email) on conversion for

every individual and at the aggregate levels. We provide a comparison of such time-varying

impacts across channels which reveal interesting insights into relative importance of the

channels. With the availability of appropriate historical data on marketer actions, these

analyses can help marketers choose among different targeting strategies. They can focus on

specific intervention tools and appropriate timing of these interventions, thereby improving

the effectiveness of targeting strategies as we discuss as extensions to the above analyses.

Identifying high-potential customers.

Given the high AUC values achieved by our model (see Table 4), it demonstrates strong

potential for identifying customers with a high likelihood of conversion and generating behav-

ioral profiles for lookalike modeling. To illustrate this, we create cumulative True Conversion

Rate (TCR) and gain charts comparing our model’s conversion predictions to those of com-

peting models for users in the holdout sample.8

In Figure 5a – the true conversion rate (TCR) chart – we plot the true conversion rates

(Y-axis) for customers in the top 10% of the holdout sample based on predicted probabilities,

then the top 20%, and so on until the entire sample is included. A random selection of 10%,

20%, etc., from the sample would yield a constant true conversion rate of approximately

19%, representative of the entire sample (indicated by the black dashed line in the graph

against which a lift is determined; but, in this graph, we just plot the true conversion rates

in the Y-axis). In the top 10% of the sample identified by our transformer model (blue

8These are customers in the holdout sample during the holdout periods.
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(a) True Conversion Rate Chart (b) Gain Chart

Figure 5: True Conversion Rate and Gain in Top Decile Customers

line), the true conversion rate is 88%. For comparison, we also evaluate the performance

of competing models (HMM, Point Process, and LSTM).9 The corresponding figures for

competing models are considerably lower, with LSTM achieving the highest rate of about

34%. Figure 5a clearly demonstrates our model’s superior performance at every targeted

percentage level of the holdout sample, as shown by the blue line compared to the other

lines.

In Figure 5b, the gain chart shows the cumulative percentage of actual conversions (Y-

axis) captured within the top 10%, 20%, etc., of the holdout sample ordered by predicted

conversion probabilities from the different models. Our transformer model identifies 100%

of actual conversions within the top 40% of the holdout sample. The LSTM, the next-best

model, identifies only 83% of actual conversions even when extending to 70% of the holdout

sample ordered by predicted probabilities. Both the TCR and gain charts clearly indicate

that our model significantly outperforms competing approaches, offering superior accuracy

and more precise profiling for targeted marketing, ultimately enabling higher ROI.

9Specifications and details of these models are discussed later in the paper under the Model Comparison section.

These results are presented here for completeness and comparison. Note that the holdout sample size for our model

and LSTM (n = 46,288) is the same, whereas the sample size for the HMM and Point Process models is smaller (n

= 2,000) to expedite estimation, as these models are significantly slower due to their lack of parallel processing.
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Single-Journey versus Multiple-Journey Customers.

An argument could be made that training models with data from users having multiple

customer journeys, rather than from single journeys, might inflate model performance due to

the additional information available about repeat behaviors (e.g., repeat visits or purchases).

It could also be argued that predicting conversion rates for multiple-journey customers might

be easier, whereas the critical utility of such models is predicting conversions in customer

journeys without historical data beyond a single journey. Our results lend some credibility

to this argument. Specifically, 84% of our data represents single-journey customers, with the

remainder being multiple-journey customers. However, within the top decile of predicted

conversions identified by our transformer model, 39% of customers have multiple journeys,

leaving 61% as single-journey customers.

To test the capability of our transformer model in predicting conversions within a single

customer journey context, we train the model exclusively on single-journey customers (n =

77,907) and used it to predict conversion rates for those single-journey customers who did

not convert during the calibration period but may have converted during the holdout period.

Approximately 16% of these customers converted in the holdout period.

(a) True Conversion Rate Chart (b) Gain Chart

Figure 6: True Conversion Rate and Gain in Top Decile Single Journey and
Not-yet-Converted Customers

Figures 6a (true conversion rate chart) and 6b (the gain chart) compare the perfor-

mances of our transformer model trained on single-journey data (the violet line) versus
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multiple-journey data (blue line), alongside competing models trained on multiple-journey

data (other lines). The cumulative lift chart illustrates that at the top 10% of the holdout

sample ordered by predicted probabilities, the transformer model trained on single-journey

data slightly outperforms the multiple-journey trained model (34% versus 33%, respectively).

At the top 40%, however, the multiple-journey trained model performs slightly better. Over-

all, as indicated by the gain chart (Figure 6b), the transformer model shows comparable per-

formance in identifying actual conversions from single-journey data, regardless of whether it

was trained on single- or multiple-journey datasets. In contrast, competing models perform

poorly in predicting conversions for single-journey customers who have not converted during

the calibration period. The key takeaway from this analysis is that training the transformer

model on multiple-journey data does not diminish its effectiveness in identifying conversions

within single-journey datasets, even with significantly fewer touchpoints. This highlights the

transformer’s versatility and consistent predictive performance across different training data

sets.

Prediction Performance Across Customer Types.

In the earlier subsection, we noted that within the top 10% of customers ordered by

predicted probabilities derived from the entire dataset (including both multiple-journey and

single-journey customers), 39% are multiple-journey customers, and 61% are single-journey

customers—even though single-journey customers comprise 84% of the dataset. This clearly

indicates that the model performs better at identifying multiple-journey customers, which

aligns with expectations: more touchpoints and historical purchase information naturally

lead to more accurate predictions.

We further analyze the top 10% of non-converted customers at the end of the calibra-

tion period, ranked by predicted conversion probabilities in the holdout period using the

transformer model trained exclusively on single-journey data. Specifically, we compare the

frequency distribution of touchpoints within this top decile to that of the entire holdout sam-
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ple and calculated the corresponding lift values—defined as the true conversion rate within

the top 10% divided by the average conversion rate among customers in the holdout sample

with the same number of touchpoints. This metric indicates the model’s effectiveness relative

to a random selection baseline.

As summarized in the table below, we observe that conversion rate decrease slightly as

we have more touchpoints in the customer journey. This could be because in our loyalty

program data, increased engagement and interactions, more often than not, is indicative

of no purchase. That is, those who purchase do it quickly with fewer touchpoints. The lift

increases with more touchoints, which suggests more accurate prediction with more customer

data.

Table 5: Touchpoint Frequency Table for Top 10% High Potential Customers

No. of Top 10% Customers in Hold-out Sample All Customers in Hold-out Sample Lift

Touchpoints Counts Proportion True Conversion Rate (TCR) Counts Proportion True Conversion Rate (TCR)

0 614 0.229 0.340 8802 0.328 0.163 2.090

1 780 0.291 0.331 9963 0.371 0.058 5.695

2 474 0.177 0.345 3258 0.121 0.073 4.754

3 238 0.089 0.316 1544 0.058 0.067 4.747

4 154 0.057 0.292 897 0.033 0.062 4.696

5 107 0.040 0.280 590 0.022 0.059 4.737

6 85 0.032 0.270 420 0.016 0.056 4.811

7 46 0.017 0.252 265 0.010 0.048 5.218

8 45 0.017 0.239 177 0.007 0.045 5.271

9 25 0.009 0.216 164 0.006 0.037 5.906

10 26 0.010 0.202 109 0.004 0.032 6.212

> 10 88 0.033 0.182 630 0.023 0.027 6.738

Note. Top 10% customers are identified by sorting single-journey, non-converted customers in the hold-out sample according to their
purchase probability as predicted by the model. The True Conversion Rate (TCR) is given by the proportion of customers who convert
within each segment. Lift is then calculated as the ratio of the TCR for the top 10% customers to the TCR for the full sample, reflecting
the model’s advantage over a random predicting model.

Time-varying impact of touchpoints.

With our model, we can estimate the time-varying impact of each touchpoint on conver-

sions, both at the individual and aggregate level, assigning a time-varying importance score

to each channel at each touchpoint. Choosing to estimate these scores with the widely used

Shapley value can be computationally costly or virtually impossible to calculate the precise
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values for each variable when their number is large (Castro, Gómez, and Tejada 2009). In

this research, we use the Integrated Gradients Attribution method proposed by Sundarara-

jan, Taly, and Yan (2017) to calculate the importance score for each customer interaction

event in the journey (please see Web Appendix B for more details).

We select a hold-out sample consisting of 10% randomly sampled customers and calculate

the importance score for the conversion probability prediction of each customer in each

period. For each prediction of conversion probability, the importance score is calculated for

each touchpoint interaction the customer has in their history of visits, indicating how the

customer’s probability of conversion will change with the touchpoint compared to without

the touchpoint.

Figure 7: Time-Varying Impact of Direct Channel Visits

Do visits through the same touchpoint at different times impact conversion differently?

To analyze this, we designate the purchase day as day 0 and compute the mean importance

scores for touchpoint visits occurring at various time intervals prior to the purchase. Figures 7

and 8 show the mean attribution results for direct (customer-initiated) visits and email (firm-

initiated) visits. The vertical axis represents the mean importance scores per visit, while the

horizontal axis indicates the time difference between the visit and the purchase, with more

recent touchpoints appearing on the right. As expected, the most recent visits (within a

12-hour window) have the highest impact on conversion probability, especially for direct

visits (0.08). Interestingly, most touchpoints positively impact conversion predictions up to
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a time threshold, typically around 30 days before purchase. Beyond this threshold, visits

tend to exhibit slightly negative attribution scores, suggesting reduced purchase likelihood

(as compared to the baseline probabilities) associated with earlier interactions.

Figure 8: Time-Varying Impact of Email Channel Visits

Understanding the time-varying impact of channel touchpoints on purchases provides

valuable insights into the effectiveness and limitations of firm-initiated interventions, such

as paid search or email. These interventions generally exhibit a shorter span of impact

compared to customer-initiated visits, like direct visits. Table 6 provides a comparison of

the aggregate impacts of such touchpoints occurring in 7-day window prior to the conversion

event and in 14-day window prior to the conversion event for all the channels as well as

prior purchase. Direct visits have the most impact on a conversion event in the 7- and

14-day prior windows, followed by natural (organic) search, unpaid referrer, and affiliate.

Paid search and e-mail have impacts that are lower than these other channels, highlighting

their relative impacts under the marketing mix policy that generated this data. For natural

search the 7-day prior window captures most of the impact and the 14-day window does

not add anything significant in terms of impact. For B2B, the impact of prior visits is even

shorter (0.0289 for 7-day window versus 0.0282 for the 14-day window). The impact of prior

purchases is strong on conversion highlighting the impact of behavioral loyalty.

The estimates in Table 6 are important for assessing the differential effects of customer-

initiated versus firm-initiated interactions within a given media mix allocation. Additionally,

26



Table 6: 7- and 14-Day Aggregate Impact after Touchpoint

7-Day Aggregate Impact 14-Day Aggregate Impact

Booking 0.1186 0.2402

Channel Visit

AFFILIATE 0.1328 0.1652

B2B 0.0289 0.0282

DIRECT 0.2865 0.3762

DISPLAY -0.0112 -0.0132

ECONFO AND PRE-ARRIVAL EMAIL 0.0974 0.1293

EMAIL 0.0897 0.1171

EMERGING TECHNOLOGIES -0.0278 -0.0319

NATURAL SEARCH 0.1609 0.1976

PAID SEARCH 0.0898 0.1135

REFERRAL ENGINE 0.0015 0.0026

RESLINK 0.0849 0.0988

SOCIAL MEDIA -0.0100 -0.0094

UNPAID REFERRER 0.1398 0.1927

they can inform the optimal timing of interventions if data on historical marketing mix were

available, as we discuss in the following subsection.

Extensions.

A user’s customer journey consists of both customer-initiated and firm-initiated touch-

points. This raises a critical question: when is the optimal time for a firm to target a

customer based on an observed customer-initiated touchpoint that might signal a potential

sale? Targeting too early, before the customer is ready, or too late, after the purchase de-

cision has already been made, can lead to ineffective ad targeting. The optimal timing of

targeting has not been extensively explored in the existing literature, partly due to the spar-

sity of customer visit or transaction data over time. However, with the proposed transformer

model, we can now dynamically tailor targeting strategies for each individual or cohort of

individuals leveraging their observed history of visits and purchases to optimize touchpoint

timing and maximize overall impact, with a significant caveat. Specifically, the pattern of ob-
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served data is endogenous in that the marketing-mix variables are often chosen by managers

with at least partial knowledge or expectation of the response parameters we estimate using

our transformer model. If we have the history of marketing-mix decisions that lead to the

observed data, we can estimate a supply-side model and relate it to our transformer model,

similar to extant approaches in new empirical IO models (also see Manchanda, Rossi, and

Chintagunta (2004)). To illustrate the power of our method in such targeting decisions, we

provide an example of (a) e-mail targeting to explore different policies for e-mail targeting,

(b) targeting timing with e-mail for individuals as well as (c) cohorts in Web Appendix C.

Marketing Implications of Multi-Head Self-Attention.

In an LLM implementation using transformers, each head captures a specific latent self-

attention pattern or relationship between different words in a sequence, as illustrated in

Figure 2a. In our application, the heads capture latent self-attention patterns that charac-

terize relationships between touchpoints in a customer journey, similar to how latent classes

in a finite mixture model capture heterogeneity in customer preferences. The number of

heads, H, retained in the model is taken as a hyperparameter that is trained together with

other parameters (see Web Appendix A for a discussion on hyperparameter tuning). In our

application, we selected H = 4. We also validate our number of head selection by training a

transformer model for H = 1, 2, 3, 4, respectively. The four models are then evaluated on the

training and hold-out sample. Table 7 shows that the increase in AUC becomes marginal

when moving from three to four heads.

Table 7: Transformer Performance under Different Number of Heads

Number of Heads Mean AUC Mean Balanced Accuracy

Training Sample Hold-out Sample Training Sample Hold-out Sample

H=1 0.9019 0.8912 0.7976 0.7799

H=2 0.9665 0.9102 0.9006 0.7807

H=3 0.9717 0.9111 0.8886 0.7819

H=4 0.9714 0.9138 0.8817 0.7879

Figure 9 visualizes the attention weights generated by the four heads using their latent
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self-attention patterns in the first layer in the modeling process of User A’s journey 10 . The

subsequent three layers exhibit similar patterns to the first layer. The sequence on the left

represents the role of query, corresponding to the focal event being encoded. On the right,

the sequence illustrates the role of key, representing the prior events in relation to the focal

event under examination. The grey block on DIRECT indicates it as one key, while the grey

block further down on the right indicates the non-event (no visit) as another key. The colored

blocks in the visualization represent attention weights generated by the four attention heads,

each with their own self-attention pattern. Lighter colors indicate lower attention weights

with blue, orange, green and red distinguishing each head.

Starting with ’DIRECT’ as the key, the blue and green heads indicate that the attention

weight of the first direct visit is higher in the periods immediately following the visit (darker

color). While the green head captures the immediate impact, the blue head reflects a slightly

lagged effect, as it is lighter in the period immediately following the visit. Both heads show

much lower weights after the second ’Direct & Booking’ visit, illustrating that the impact of

a prior interaction diminishes following the completion of a transaction, which often marks

the beginning of a new customer journey. However, the impact persists slightly for several

periods and even increases at certain points. These self-attention patterns may capture

different purchase motivations or booking occasions, such as a customer quickly booking a

hotel room for a business trip (immediate impact of a visit).

The orange head shows a very delayed impact of the direct visit, with darker colors ap-

pearing after a substantial lag, potentially capturing a customer booking a room for leisure

travel after a longer decision-making process. When a non-event (the grey block represent-

ing ’no visit’) is used as the key, none of the blue, orange, or green heads show engagement.

However, the red head demonstrates a subtle initial impact that intensifies in later peri-

ods, indicating higher attention weights. This self-attention pattern might capture overall

population trends in the customer journey data and associate them with the non-event

10For an interactive version of the figure, see https://zplu.github.io/blog/viewa updated.html.
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Figure 9: Attention Weights of the Four Heads in Modeling of the User A
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In this context, the heads H with different self-attention patterns can be viewed as latent

classes, with each head capturing a specific pattern (immediate effect, a lag effect, overall

trend) characterizing motivations, booking occasions or population trends. The variation

in head weights captures the customer-level heterogeneity in the mix of motivations/usage

occasions that characterize their journeys, with individual head weights determining the mix

appropriate for each user. The number of heads H and the corresponding user head weights

can be viewed as latent classes and as the probabilities of belonging to each latent class.

This can be useful for managers for descriptive purposes: (a) to segment the customer base,

(b) generate profiles based on their relationship patterns between touchpoints, and (c) gain

deeper understanding of their motivations in purchase journeys.

It is important to note that the self-attention weights we estimate in our transformer

model are point estimates. Estimating the uncertainty in these weights could aid descriptive

interpretation that we discuss above. While we do not perform such uncertainty estimation

in the paper, we can use the Monte Carlo Dropout method suggested by Gal and Ghahramani

(2016). This method involves setting (drop out) some neurons to zero in each layer during

training. Specifically, we enable dropout at inference time and run the same input multiple

times through the model. Since, each time, dropout causes slightly different outputs because

of different neurons being active, we can collect these outputs and compute averages and

standard deviations. This procedure approximates a Bayesian inference model (Gal and

Ghahramani 2016). We could have the potential for redundant heads in estimating the

different self-attention weights (Michel, Levy, and Neubig 2019; Gordon, Duh, and Andrews

2020). In our empirical application, this does not seem to be a problem as we have just

four heads and the pattern of relationships in the individual heads are distinctly different as

seen in Figure 9 visualizing the heads. Symmetry in hyperparameter tuning rarely leads to

such problems in transformers as permutation symmetry breaks down due to optimization

dynamics.
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MODEL COMPARISONS

Among customer journey models, the Hidden Markov Model (HMM) (Netzer, Lattin,

and Srinivasan 2008; Abhishek, Fader, and Hosanagar 2012; Li and Ma 2020) is a key bench-

mark, using hidden states to represent customers’ underlying journey stages inferred from

behaviors like visits or purchases. Recently, the Poisson point process model (Goić, Jerath,

and Kalyanam 2021) was introduced to model the likelihood of events over time, a challenge

for other models. LSTM, a recursive neural network model, has also been applied for se-

quence modeling to predict customer transactions (Valendin et al. 2022). For comparison,

we use HMM, the Poisson point process, and LSTM as benchmarks to evaluate our model’s

performance.

Benchmark I: Hidden Markov Model

We build our HMM benchmark based on Li and Ma (2020). In addition to the 13 channels

listed in Table 2, we introduce an outside option to represent periods when no visits to the

firm’s website are observed from a customer in a time period. This addition enables us to

build the model on a panel-structured data instead of the touchpoint sequence data in Li

and Ma (2020). Below, we briefly introduce the structure of the HMM used for comparison.

The model assumes S hidden states, representing different levels of a consumer’s latent

purchase intent. Let sit denote the latent state of consumer i at time t, where sit ∈ {1, . . . , S}.

The states are ordered by increasing intrinsic purchase propensity, which helps to deal with

label switching. The initial probability that a consumer starts her journey from a state is

given by P 0 = (ρ01, ..., ρ0S). State transitions depend on the channel and are governed by a

channel-specific S × S transition matrix Pc = {ρcss′}s,s′∈{1,...,S}, where c = 1, . . . , C indexes

the 13 channels and the outside option.

At each period, the consumer first decides whether to visit through a channel or not (i.e.,

choose the outside option). The probability of visiting through channel c is determined by
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the consumer’s current state sit via an emission coefficient λcsit , using a binary logit model:

pvcsit =
exp(λcsit)

1 + exp(λcsit)
, c = 1, ..., C − 1. (4)

The probability of choosing the outside option C is modeled as pvCsit
=

∏C−1
c=1 (1− pvcsit).

The superscript v denotes “visit”. The consumer’s state evolves over time based on her

choice of channel to visit (or not) and the corresponding transition matrix Pc.

Conditional on making a visit, the consumer then decides whether to make a purchase.

The purchase probability is also state-dependent and follows a binary logit model based on

a coefficient αsit :

ppsit =
exp(αsit)

1 + exp(αsit)
, (5)

where the superscript p denotes “purchase”.

Benchmark II: Poisson Point Process Model

Our Poisson point process model is built based upon Goić, Jerath, and Kalyanam (2021).

The Poisson point process models the arrival rates for each channel at each period. The

number of visits in each time period is assumed to follow Poisson distribution. The propensity

of consumer i to visit channel c at period t is given by

µic′ct = µ0 exp(αc′ + βc + θδc′c +
∑
c

ρc ln(1 +Nict)). (6)

The model is specified in a first-order Markov manner. c′ is the previous channel visited

by the consumer. Nict is the number of times consumer i has visited the website through

channel c up to time t. The αc′ captures the attractiveness of the last visited channel c′ and

the current channel βc, respectively. δc′c is a dummy variable taking the value 1 if c′ = c,

so θ measures the inertia of visiting the same channel. The term ln(1 + Nict) represents a

cumulative inventory of visits for each channel, which is widely adopted by extant literature.
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Conditional on having a visit to the website, the probability a consumer makes a purchase

is described by a logit form

pit =
exp(ϕ0 +

∑
c ϕc ln(1 +Nict))

1 + exp(ϕ0 +
∑

c ϕc ln(1 +Nict))
. (7)

The probability of purchase depends on the weighted inventory of visits at each channel.

The model assumes that consumers accumulate information at each channel as more visits

are made through the channel, which impact their purchase probability. ϕ0 determines the

baseline purchase probability and ϕc determines the contribution of each channel.

Benchmark III: LSTM

We build the LSTM model similar to the transformer, with the same input and output

variables. The model is built in a similar way that takes a customer’s previous interactions as

input and output the probability of visit or purchase in the next period. It also has a shared

embedding layer and a separate separate LSTM layer for each prediction target variable of

customer purchase or visit.

Performance Comparisons

We estimate HMM and Poisson point process using the Markov chain Monte Carlo

(MCMC). We randomly sample 2,000 users from the same training data set we used for

transformer training to train both models. For HMM, after comparing different numbers of

states, we choose three states to estimate the model. We use the Adam optimizer to train

the LSTMs. For all three benchmark models, the 173 time periods are split into 140 and 33

time periods, with the first 140 time periods calibration periods for training and the last 33

periods as hold-out periods.

Table 8 compare the model performances11 of conversion prediction on the first 140

11We also present the balanced accuracy performance, as detailed in Web Appendix C, and observe results

consistent with the AUC.

34



time periods on the training sample and hold-out sample respectively. Figure 10 shows

the ROC curve of the proposed model versus three benchmark models. The training and

hold-out samples are split by individual. The in-sample performance indicates the model

goodness of fit in the model fitting process, while the out-of-sample performance indicates

the model accuracy in the hold-out sample. When estimating the hold-out sample results,

for each time period t ≤ 140, all models predict a customer’s visit channel and conversion

in a subsequent period given the customer’s history of all previous time periods. Compared

to the benchmarks, the proposed transformer model has significant better out-of-sample

performance, and it also has consistent in-sample and out-of-sample performances, indicating

it is not overfitting the data.

Table 8: Model Comparison in the Calibration Period (0 ≤ t < 140)

Dependent Variable In-Sample AUC Out-of-Sample AUC

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.9435 0.8466 0.7346 0.6826 0.9205 0.8456 0.6822 0.6817

Channel Visit

AFFILIATE 0.9937 0.8544 0.8025 0.8394 0.9165 0.8289 0.7204 0.7761

B2B 0.9994 0.7342 0.8295 0.8524 0.9541 0.7498 0.8213 0.8833

DIRECT 0.9225 0.8043 0.7749 0.7590 0.8939 0.7938 0.7378 0.7634

DISPLAY 0.9805 0.8092 0.6846 0.7086 0.9042 0.7896 0.7074 0.6482

ECONFO AND PRE-ARRIVAL EMAIL 0.9720 0.8560 0.8170 0.7053 0.9176 0.8465 0.7874 0.6805

EMAIL 0.9740 0.8114 0.7598 0.7049 0.9197 0.8084 0.7124 0.7130

EMERGING TECHNOLOGIES 0.9939 0.7833 0.7947 0.5715 0.8879 0.7556 0.777 0.8140

NATURAL SEARCH 0.9402 0.8201 0.7439 0.7493 0.8944 0.8043 0.6814 0.7012

PAID SEARCH 0.9576 0.7894 0.6856 0.6723 0.8972 0.7747 0.6183 0.6652

REFERRAL ENGINE 0.9872 0.8040 0.7089 0.7212 0.9198 0.8012 0.7153 0.6890

RESLINK 0.9871 0.8232 0.5776 0.7907 0.9197 0.7938 0.5751 0.6848

SOCIAL MEDIA 0.9973 0.8879 0.7982 0.8240 0.9180 0.8326 0.7928 0.7264

UNPAID REFERRER 0.9692 0.8718 0.8556 0.8152 0.9223 0.8553 0.8053 0.7752

When making predictions of a customer journey, oftentimes the firm needs to predict more

than one period ahead. Using the last 33 time periods as hold-out periods, the transformer

model performances in the hold-out periods demonstrate its long-term predictive ability

(Table 9). Figure 11 shows the ROC curve for this comparison. For the HMM and Poisson

point process models, the long-term prediction performance declines greatly as the prediction
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(a) In-Sample (b) Out-of-Sample

Figure 10: ROC curve of proposed model versus three benchmark models on the first 140
time periods.

period becomes longer, which can be attributed to the error propagation for first-order

Markov models. Because both the HMM and Poisson point process model rely solely on

information from the previous period to predict the current period, when predicting more

than one period ahead, the error from one period propagates and will carry over and affect

the accuracy of the next period prediction. When the sequence to be predicted is long, the

accumulated error can be very large. The transformer mitigates the issue of long, sparse data

by spanning its self-attention across a long sequence. Thus the prediction performance of the

transformer model is much better than the three benchmark models in long-term prediction.

SIMULATION

A question naturally arises: Why does the transformer outperform alternative models,

even when compared with the LSTM, which shares similar neural network structures. This

section aims to address this through simulation. Our simulation studies are divided into

two parts. First, we conduct extensive simulations across various data-generating processes

(DGPs) to evaluate the performance of transformer models compared to the same benchmark

models. The results demonstrate that transformers consistently perform well, even when a
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Table 9: Model Comparison in the Hold-out Period (t ≥ 140)

Dependent Variable In-Sample AUC Out-of-Sample AUC

Proposed

Transformer
LSTM HMM

Point

Process

Proposed

Transformer
LSTM HMM

Point

Process

Booking 0.8862 0.6380 0.398 0.4142 0.8585 0.5737 0.3839 0.3947

Channel Visit

AFFILIATE 0.9172 0.6487 0.9096 0.9573 0.8228 0.6359 0.7099 0.7503

B2B 0.8386 0.3592 0.3962 0.8673 0.7502 0.3995 - -

DIRECT 0.9018 0.6008 0.5889 0.5667 0.8254 0.5857 0.6169 0.5730

DISPLAY 0.8664 0.6171 0.6055 0.5265 0.6354 0.5661 0.6364 0.5679

ECONFO AND PRE-ARRIVAL EMAIL 0.8810 0.7114 0.4891 0.6646 0.8555 0.6740 0.6189 0.5522

EMAIL 0.8583 0.6719 0.6325 0.5653 0.6834 0.6098 0.5957 0.5448

EMERGING TECHNOLOGIES 0.3652 0.6411 0.7284 0.4689 0.3579 0.5990 0.9324 0.4663

NATURAL SEARCH 0.9010 0.6598 0.5990 0.5668 0.7903 0.5737 0.6016 0.5636

PAID SEARCH 0.8949 0.6309 0.5584 0.6094 0.8332 0.6018 0.658 0.7258

REFERRAL ENGINE 0.8868 0.6447 0.6679 0.5704 0.7261 0.5434 0.6557 0.5944

RESLINK 0.7993 0.6827 0.5771 0.5933 0.5426 0.5811 0.7217 0.7351

SOCIAL MEDIA 0.8391 0.6516 0.2457 0.4568 0.7978 0.7498 0.9714 0.4576

UNPAID REFERRER 0.9072 0.7417 0.6311 0.6781 0.8237 0.6858 0.6427 0.6667

(a) In-Sample (b) Out-of-Sample

Figure 11: ROC curve of proposed model versus three benchmark models on the last 33
hold-out time periods.

competing model aligns with the underlying DGP. Moreover, transformers excel in handling

datasets with mixed DGPs or complex non-linear relationships, emphasizing their versatil-

ity. These simulations highlight the superiority of transformer-based models across diverse

scenarios while identifying the boundary conditions of their performance relative to compet-

ing models. Second, we perform ablation experiments to analyze how different transformer
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components contribute to prediction accuracy12. The results reveal that disabling positional

encoding significantly degrades performance across all DGPs, while reducing self-attention

(via masking touchpoints) similarly impacts performance in high-order DGPs, emphasizing

the critical role of self-attention in capturing higher-order processes. Additionally, reducing

the number of heads significantly affects performance in mixed DGPs, highlighting the im-

portance of multi-head attention for handling complex relationships. We elaborate on these

findings in the sections below.

Model Comparison under Different DGPs

In the Model Comparison section, we evaluated the proposed transformer against HMM,

Point Process, and LSTM models using our application data. To assess performance under

diverse conditions, we conduct systematic simulations across various data-generating pro-

cesses (DGPs). These simulations are designed to approximate the broad range of DGPs

encountered in real-world scenarios, offering a comprehensive comparison of the transformer’s

capabilities relative to the benchmark models.

HMM and Point Process DGPs.

We conduct 50 simulation scenarios with varying parameters under the HMM and Point

Process DGPs. These DGPs are specified as in the benchmark models discussed in the

Model Comparison section, with the number of channels reduced to three. For each model,

we draw 50 sets of parameters from their prior distributions and generate 50 datasets, sim-

ulating visit and purchase behavior for 1,000 customers over 100 time periods. Table 10

summarizes the simulated datasets. For each dataset, we estimate the Transformer, LSTM,

HMM, and Poisson Point Process models. Since the true data-generating probabilities are

known, we evaluate predictive performance by comparing each model’s probability outputs

to the true probabilities using average cross-entropy. Lower cross-entropy scores indicate

12Please see Web Appendix E for results of ablation experiments
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better alignment with the true probabilities. We also assess classification performance using

AUC, balanced accuracy, and F1 scores, where higher values indicate better performance. To

simplify comparisons, we calculate the absolute deviation of each model’s in-sample predic-

tions from the best-performing model (which has zero deviation) for each metric. Figure 12

reports the mean absolute deviation across the 50 datasets, where smaller deviations indicate

better performance. The Transformer demonstrates superior performance in cross-entropy,

closely aligning with the true DGP probabilities. For classification metrics, the model aligned

with the DGP performs best as expected. Yet notably, the Transformer consistently achieves

strong classification performance across all scenarios, comparable to that of the DGP model.

Table 10: Summary Statistics of the Simulated Datasets

Number of Datasets Mean SD Min Median Max

DGP - HMM

Frequency of Channel 1 50 0.489 0.180 0.171 0.442 0.846

Frequency of Channel 2 50 0.503 0.161 0.179 0.529 0.852

Frequency of Channel 3 50 0.523 0.158 0.193 0.535 0.755

Frequency of Purchase 50 0.429 0.112 0.207 0.430 0.644

DGP - Point Process

Frequency of Channel 1 50 0.200 0.135 0.0004 0.207 0.368

Frequency of Channel 2 50 0.198 0.136 0.0001 0.210 0.373

Frequency of Channel 3 50 0.195 0.134 0.0004 0.198 0.366

Frequency of Purchase 50 0.230 0.249 0.0004 0.114 0.722

Note. Frequency of a channel is calculated by the number of periods with a visit through the
channel divided by the total number of periods. Frequency of purchase is calculated by the
number of periods with a purchase divided by the total number of periods.

Autoregressive DGPs with calendar effects.

Next, we conduct simulations comparing performances under DGPs of different autore-

gressive process. The AR DGPs are designed to create dependencies spanning various num-

ber of time steps (AR1, AR3, AR5) in the touchpoint sequence. Each variable is modeled as

a function of the lags of all other variables, analogous to the structure of a Vector Autoregres-

sion (VAR) model. We further simulate varying degrees of calendar effects (weak/strong),
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Figure 12: Mean Absolute Deviation from the Best Performing Model across the 50
Simulated Datasets

including day-of-week and month-of-year effects, on top of the AR process. The coefficients

for the strong and weak calendar effects are drawn from different uniform distributions. The

details of model specifications can be found in Web Appendix F. We simulate panel data

of 10,000 customers across 100 time periods for each AR model, with each dataset having

three channel visit variables and one purchase indicator. The AR datasets have a larger

customer base because we find that sample size plays an important role in identifying the

inter-temporal dependency, on which we have run a separate experiment specified below.

The performance comparison is shown in Figure 14. Under AR DGPs without calendar

effects, transformers perform better than HMM or Point Process models, while performing

as well as LSTMs under AR1 and second to LSTMs under other AR conditions. This result

highlights LSTMs’ excellent performance in handling high-order linear dependencies in the

sequence data (Siami-Namini, Tavakoli, and Siami Namin 2018). In the presence of calendar

effects, transformers outperform LSTMs under AR1 and narrow the gap with LSTMs under

other AR conditions, indicating transformers are better at identifying time effects. This

could result from the different mechanisms two models use to identify time effects: LSTMs

process the data step-by-step, each step processing one time step of the input and passing

its hidden state to the next step. The sequence order is captured implicitly in this structure.

Transformers, on the other hand, process the entire sequence simultaneously. They use

40



explicit positional encoding to inject information about the order of the sequence.
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Figure 13: Mean Cross Entropy with True DGP Probability for AR Datasets

Varying sample size under AR DGPs.

We find that the sample size plays a critical role for transformers to identify the depen-

dencies in the AR simulations. To validate this, we simulate four datasets, each containing

10,000, 20,000, 50,000, and 100,000 customers, respectively, all simulated under the same

AR5 DGP. All datasets have the same time window of 100 periods. We compare the perfor-

mance of the proposed transformer and LSTM for each sample size. The results are shown

in Figure 14. As the sample size increases, the performance gap between the transformer

and the LSTM decreases. The difference in AUC between the two models is less than 1%

for sample size of 100,000. This result highlights that, compared with LSTMs, transformers

need a larger sample size to effectively capture the linear dependencies in the sequence.

Mixture DGP.

To approximate the complexity of real-world data, where the true generating process is

often unknown and multiple mechanisms may influence customer journeys, we construct a

mixture DGP combining multiple types of generating processes: (a) an HMM DGP, (b) a

Point Process DGP, and (c) an AR5 process with weak calendar effect. All three DGPs are

from the DGPs described above, with three channel visit variables and a purchase indicator.
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Figure 14: Transformer and LSTM Performance under Different Sample Size under AR5
DGP

The probability distribution over the three DGPs is drawn from a flat Dirichlet distribution

and remains constant for all customer in all periods. Figure 15 shows the model comparison

under the mixture DGP. The transformer outperforms all other models in predicting all four

variables in both cross entropy and AUC, highlighting that the transformer handles complex

data patterns much better than competing models.

Figure 15: Model Comparisons under Mixture DGP

Simulating the time series patterns in the application data.

Lastly, we experiment with data where the time varying patterns are similar to the data

we use in our applications. We focus on three channels (Direct, Natural Search, and Email)
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in our applications along with the booking variable. Since the visit and purchase indicators

are binary variables, these variables are modeled using a logistic regression that includes

only a time fixed effect, represented as yct = logit(λct), where λct denotes the time fixed

effect to be estimated for variable c. By examining the ACF and PACF plots of λct, and

also checking the AIC and BIC of ARMA models of different orders, we determine that an

ARMA(2,2) process most accurately describes the patterns observed in the data. We fit an

ARMA(2,2) model to each time series λct, and simulate data from the coefficients estimated.

More details on time series modeling and simulation can be found in Web Appendix F. The

simulated data contains 10,000 customers across 100 periods under the same ARMA(2,2)

process. This simulation simplifies the original data patterns by focusing solely on the

autocorrelation structure, while disregarding any inter-channel correlations.

We compare the performance of the proposed transformer and other three models on

the simulated ARMA(2,2) data. As seen in Figure 16, the transformer outperforms the all

other models by a large margin. Although this is a simplified simulation of the pattern in

the application data, it echoes the good performance of our transformer approach in the

Application section.

Figure 16: Model Comparisons under ARMA(2,2) DGP

Our experiments across various DGPs demonstrate that the transformer consistently out-

performs all competing models under all conditions, while competing models excel only in
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specific scenarios (e.g., HMM under HMM DGP, Point Process under Point Process DGP).

LSTMs handle linear high-order dependencies better when sample sizes are small, highlight-

ing the transformer’s need for larger datasets to capture such relationships and establishing

its performance boundaries. However, for complex real-world data patterns, the transformer

surpasses all competing models.

DISCUSSION AND CONCLUSION

In this paper, we apply AI for modeling customer journeys using a transformer-based

approach. Just as the transformer technology generates the next word or vocabulary in the

LLM context based on learning a large corpus of text, we use the transformer technology to

predict the next touchpoint in the customer journey using the data to learn the self-attention

patterns. We show through simulations and empirical analyses that our transformer-based

model is superior to competing models such as LSTM, HMM and Point process models in

terms of predictions as well as providing unique insights into the heterogeneity characterizing

customer journeys through the multi-head self-attention patterns. The empirical application

highlights how managers can use the features of the model to identify high-potential cus-

tomers and could plan the timing of interventions both at the individual and cohort levels

if appropriate data were available.

From a modeling perspective, our approach captures the relationships between past and

current visits using multiple attention heads that identify latent self-attention patterns. We

describe how the model captures self-attention patterns reflecting population-level trends as

well as the heterogeneity in relationships between touchpoints within individual customer

journeys. The model assigns varying weights to each head, reflecting the unique aspects of

each user’s journey. By accounting for customer-specific heterogeneity, the model achieves

more accurate predictions, enabling more precise targeting and thus outperforming existing

approaches. Currently, no effective tools exist for leveraging data to develop precise targeting

strategies at the touchpoint level. Our model addresses this gap by providing actionable
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insights for such tactics. The examples highlighted here emphasize the model’s value to

managers. By using our approach, managers can make informed decisions about targeting

and timing across various instruments, such as search, display, and email, enhancing the

effectiveness of their marketing strategies with the availability of complementary data on

marketing mix decisions.

Although we do not illustrate it in the present application, our model can handle a large

number of distinct event types along a customer journey with ease (over 3900 events as we

have done in an healthcare setting). For example, in the context of customer relationships

with service firms, our methodology can handle different types of customer interactions

within the firm, outside the firm, across channels and with a customer service team, etc.,

and identify critical incidences along the customer journey with the firm that impact churn

or retention outcomes significantly.

Our paper complements recent effort in marketing in using LLM technologies for mar-

keting research applications (e.g., Arora, Chakraborty, and Nishimura 2024; Angelopoulos,

Lee, and Misra 2024; Gabel and Ringel 2024; Brand, Israeli, and Ngwe 2023). Just as GPT

implementations use the left-to-right transformers to generate the next word in a sentence,

we can use the transformers to generate customer journeys of hypothetical customers which

can be used to test and simulate various interventions plans. They can also be used to plan

field experiments based on these scenarios. Another application of our model is identifying

customers with similar propensities to convert at a specific point in time based on their

customer journeys up to that moment, enabling their use in test and control groups for A/B

testing in e-mails, display ads and other marketing interventions.

At the core, the methodology we propose is predictive and descriptive in nature. Many

of the touchpoints seen in a customer journey are initiated by customers and firms reacting

to them with their own interventions and are, as such, endogenous in nature. Given such

limitations, our methodology tries to predict the next touchpoints and actions conditional

on the touchpoints that have occurred thus far. In this context, our methodology shares the
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same spirit as that of VAR modeling (Dekimpe and Hanssens 1999) which relates outcome

variables to lagged variables capturing the endogenous relationships, without trying to cor-

rect for endogeneity or debias the estimates. If there is sufficient variation in firm-initiated

actions and such data were available the firm can use these predictions to help make decisions

on who to target and when to target. As we highlighted before, with data from an ensemble

of experiments, we could learn optimal policy with a sequence of interventions along the

customer journey based (e.g., Song and Sun 2024). When comparing the performance of

our proposed transformer model with HMM and Point Process models, we are essentially

contrasting a non-parametric estimation method with a Bayesian estimation method. While

this comparison may not be entirely fair from a methodological standpoint, our focus on

the models’ predictive abilities justifies an outcome-driven perspective. Despite the above

limitations, the modeling framework that we propose illustrates the power of AI for mar-

keting applications (Deveau, Griffin, and Reis 2023). Ours is one of the first applications

to illustrate how such AI models can be used to extract relevant marketing insights from

quantitative data. We trust this work will inspire many such applications going forward.

REFERENCES

Abhishek, Vibhanshu, Peter Fader, and Kartik Hosanagar (2012), “The Long Road to Online
Conversion: A Model of Multi-Channel Attribution,” SSRN Electronic Journal http://

www.ssrn.com/abstract=2158421.

Angelopoulos, Panagiotis, Kevin Lee, and Sanjog Misra (2024), “Value Aligned Large Language
Models,” SSRN Electronic Journal https://www.ssrn.com/abstract=4781850.

Arora, Neeraj, Ishita Chakraborty, and Yohei Nishimura (2024), “EXPRESS: AI-Human Hybrids
for Marketing Research: Leveraging LLMs as Collaborators,” Journal of Marketing https:

//journals.sagepub.com/doi/10.1177/00222429241276529.

Brand, James, Ayelet Israeli, and Donald Ngwe (2023), “Using GPT for Market Research,” SSRN
Electronic Journal https://www.ssrn.com/abstract=4395751.

Carlson, Keith, Praveen K. Kopalle, Allen Riddell, Daniel Rockmore, and Prasad Vana (2023),
“Complementing human effort in online reviews: A deep learning approach to automatic
content generation and review synthesis,” International Journal of Research in Marketing,
40 (1), 54–74 https://linkinghub.elsevier.com/retrieve/pii/S016781162200009X.

Caruana, Rich (1997), “Multitask Learning,” Machine Learning, 28 (1), 41–75 http://

link.springer.com/10.1023/A:1007379606734.
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